最新版本:
http://www.mashangxue123.com/tensorflow/tf2-tutorials-quickstart-beginner.html英文版本:
https://tensorflow.google.cn/alpha/tutorials/quickstart/beginner翻译建议PR:
https://github.com/mashangxue/tensorflow2-zh/edit/master/r2/tutorials/quickstart/beginner.md
安装命令:
pip install tensorflow-gpu==2.0.0-alpha0
要开始,请将TensorFlow库导入您的程序:
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
加载并准备MNIST数据集,将样本从整数转换为浮点数:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
通过堆叠图层构建tf.keras.Sequential
模型。选择用于训练的优化器和损失函数:
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
训练和评估模型:
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
现在,图像分类器在该数据集上的准确度达到约98%。 要了解更多信息,请阅读TensorFlow教程.。