tensorflow2.0保存和加载模型 (tensorflow2.0官方教程翻译)

最新版本:
https://www.mashangxue123.com/tensorflow/tf2-tutorials-keras-save_and_restore_models.html

英文版本:
https://tensorflow.google.cn/alpha/tutorials/keras/save_and_restore_models

翻译建议PR:
https://github.com/mashangxue/tensorflow2-zh/edit/master/r2/tutorials/keras/save_and_restore_models.md

模型进度可以在训练期间和训练后保存。这意味着模型可以在它停止的地方继续,并避免长时间的训练。保存还意味着您可以共享您的模型,其他人可以重新创建您的工作。当发布研究模型和技术时,大多数机器学习实践者共享: 用于创建模型的代码 以及模型的训练权重或参数

共享此数据有助于其他人了解模型的工作原理,并使用新数据自行尝试。

注意:小心不受信任的代码(TensorFlow模型是代码)。有关详细信息,请参阅安全使用TensorFlow

选项

保存TensorFlow模型有多种方法,具体取决于你使用的API。本章节使用tf.keras(一个高级API,用于TensorFlow中构建和训练模型),有关其他方法,请参阅TensorFlow保存和还原指南保存在eager中

1. 设置

1.1. 安装和导入

需要安装和导入TensorFlow和依赖项

pip install h5py pyyaml

1.2. 获取样本数据集

我们将使用MNIST数据集来训练我们的模型以演示保存权重,要加速这些演示运行,请只使用前1000个样本数据:

from __future__ import absolute_import, division, print_function, unicode_literals

import os

!pip install tensorflow==2.0.0-alpha0
import tensorflow as tf
from tensorflow import keras

tf.__version__
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()

train_labels = train_labels[:1000]
test_labels = test_labels[:1000]

train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0

1.3. 定义模型

让我们构建一个简单的模型,我们将用它来演示保存和加载权重。

# 返回一个简短的序列模型 
def create_model():
  model = tf.keras.models.Sequential([
    keras.layers.Dense(512, activation='relu', input_shape=(784,)),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(10, activation='softmax')
  ])

  model.compile(optimizer='adam',
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])

  return model


# 创建基本模型实例
model = create_model()
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param # 
=================================================================
dense (Dense)                (None, 512)               401920    
_________________________________________________________________
dropout (Dropout)            (None, 512)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 10)                5130      
=================================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
_________________________________________________________________

2. 在训练期间保存检查点

主要用例是在训练期间和训练结束时自动保存检查点,通过这种方式,您可以使用训练有素的模型,而无需重新训练,或者在您离开的地方继续训练,以防止训练过程中断。

tf.keras.callbacks.ModelCheckpoint是执行此任务的回调,回调需要几个参数来配置检查点。

2.1. 检查点回调使用情况

训练模型并将其传递给 ModelCheckpoint回调

checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

# 创建一个检查点回调
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
                                                 save_weights_only=True,
                                                 verbose=1)

model = create_model()

model.fit(train_images, train_labels,  epochs = 10,
          validation_data = (test_images,test_labels),
          callbacks = [cp_callback])  # pass callback to training

# 这可能会生成与保存优化程序状态相关的警告。
# 这些警告(以及整个笔记本中的类似警告)是为了阻止过时使用的,可以忽略。
Train on 1000 samples, validate on 1000 samples
  ......
  Epoch 10/10
  960/1000 [===========================>..] - ETA: 0s - loss: 0.0392 - accuracy: 1.0000
  Epoch 00010: saving model to training_1/cp.ckpt
  1000/1000 [==============================] - 0s 207us/sample - loss: 0.0393 - accuracy: 1.0000 - val_loss: 0.3976 - val_accuracy: 0.8750

  <tensorflow.python.keras.callbacks.History at 0x7efc3eba7358>

这将创建一个TensorFlow检查点文件集合,这些文件在每个周期结束时更新。 文件夹checkpoint_dir下的内容如下:(Linux系统使用 ls命令查看)

checkpoint  cp.ckpt.data-00000-of-00001  cp.ckpt.index

创建一个新的未经训练的模型,仅从权重恢复模型时,必须具有与原始模型具有相同体系结构的模型,由于它是相同的模型架构,我们可以共享权重,尽管它是模型的不同示例。

现在重建一个新的,未经训练的模型,并在测试集中评估它。未经训练的模型将在随机水平(约10%的准确率):

model = create_model()

loss, acc = model.evaluate(test_images, test_labels)
print("Untrained model, accuracy: {:5.2f}%".format(100*acc))
1000/1000 [==============================] - 0s 107us/sample - loss: 2.3224 - accuracy: 0.1230
Untrained model, accuracy: 12.30%

然后从检查点加载权重,并重新评估:

model.load_weights(checkpoint_path)
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))
1000/1000 [==============================] - 0s 48us/sample - loss: 0.3976 - accuracy: 0.8750
Restored model, accuracy: 87.50%

2.2. 检查点选项

回调提供了几个选项,可以为生成的检查点提供唯一的名称,并调整检查点频率。

训练一个新模型,每5个周期保存一次唯一命名的检查点:

# 在文件名中包含周期数. (使用 `str.format`)
checkpoint_path = "training_2/cp-{epoch:04d}.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(
    checkpoint_path, verbose=1, save_weights_only=True,
    # 每5个周期保存一次权重
    period=5)

model = create_model()
model.save_weights(checkpoint_path.format(epoch=0))
model.fit(train_images, train_labels,
          epochs = 50, callbacks = [cp_callback],
          validation_data = (test_images,test_labels),
          verbose=0)
Epoch 00005: saving model to training_2/cp-0005.ckpt
......
Epoch 00050: saving model to training_2/cp-0050.ckpt
<tensorflow.python.keras.callbacks.History at 0x7efc7c3bbd30>

现在,查看生成的检查点并选择最新的检查点:

latest = tf.train.latest_checkpoint(checkpoint_dir)
latest
'training_2/cp-0050.ckpt'

注意:默认的tensorflow格式仅保存最近的5个检查点。

要测试,请重置模型并加载最新的检查点:

model = create_model()
model.load_weights(latest)
loss, acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))
1000/1000 [==============================] - 0s 84us/sample - loss: 0.4695 - accuracy: 0.8810
      Restored model, accuracy: 88.10%

3. 这些文件是什么?

上述代码将权重存储到检查点格式的文件集合中,这些文件仅包含二进制格式的训练权重. 检查点包含: 一个或多个包含模型权重的分片; 索引文件,指示哪些权重存储在哪个分片。

如果您只在一台机器上训练模型,那么您将有一个带有后缀的分片:.data-00000-of-00001

4. 手动保存权重

上面你看到了如何将权重加载到模型中。手动保存权重同样简单,使用Model.save_weights方法。

# 保存权重
model.save_weights('./checkpoints/my_checkpoint')

# 加载权重
model = create_model()
model.load_weights('./checkpoints/my_checkpoint')

loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))

5. 保存整个模型

模型和优化器可以保存到包含其状态(权重和变量)和模型配置的文件中,这允许您导出模型,以便可以在不访问原始python代码的情况下使用它。由于恢复了优化器状态,您甚至可以从中断的位置恢复训练。

保存完整的模型非常有用,您可以在TensorFlow.js(HDF5, Saved Model) 中加载它们,然后在Web浏览器中训练和运行它们,或者使用TensorFlow Lite(HDF5, Saved Model)将它们转换为在移动设备上运行。

5.1. 作为HDF5文件

Keras使用HDF5标准提供基本保存格式,出于我们的目的,可以将保存的模型视为单个二进制blob。

model = create_model()

model.fit(train_images, train_labels, epochs=5)

# 保存整个模型到HDF5文件 
model.save('my_model.h5')

现在从该文件重新创建模型:

# 重新创建完全相同的模型,包括权重和优化器
new_model = keras.models.load_model('my_model.h5')
new_model.summary()
Model: "sequential_6"
_________________________________________________________________
Layer (type)                 Output Shape              Param # 
=================================================================
dense_12 (Dense)             (None, 512)               401920    
_________________________________________________________________
dropout_6 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_13 (Dense)             (None, 10)                5130      
=================================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
_________________________________________________________________

检查模型的准确率:

loss, acc = new_model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))
1000/1000 [==============================] - 0s 94us/sample - loss: 0.4137 - accuracy: 0.8540
Restored model, accuracy: 85.40%

此方法可保存模型的所有东西: 权重值 模型的配置(架构) * 优化器配置

Keras通过检查架构来保存模型,目前它无法保存TensorFlow优化器(来自tf.train)。使用这些时,您需要在加载后重新编译模型,否则您将失去优化程序的状态。

5.2. 作为 saved_model

注意:这种保存tf.keras模型的方法是实验性的,在将来的版本中可能会有所改变。

创建一个新的模型:

model = create_model()

model.fit(train_images, train_labels, epochs=5)

创建saved_model,并将其放在带时间戳的目录中:

import time
saved_model_path = "./saved_models/{}".format(int(time.time()))

tf.keras.experimental.export_saved_model(model, saved_model_path)
saved_model_path
'./saved_models/1555630614'

从保存的模型重新加载新的keras模型:

new_model = tf.keras.experimental.load_from_saved_model(saved_model_path)
new_model.summary()
Model: "sequential_7"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_14 (Dense)             (None, 512)               401920    
_________________________________________________________________
dropout_7 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_15 (Dense)             (None, 10)                5130      
=================================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
_________________________________________________________________

运行加载的模型进行预测:

model.predict(test_images).shape
(1000, 10)
# 必须要在评估之前编译模型
# 如果仅部署已保存的模型,则不需要此步骤 

new_model.compile(optimizer=model.optimizer,  # keep the optimizer that was loaded
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 评估加载后的模型 
loss, acc = new_model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))
1000/1000 [==============================] - 0s 102us/sample - loss: 0.4367 - accuracy: 0.8570
      Restored model, accuracy: 85.70%

6. 下一步是什么

这是使用tf.keras保存和加载的快速指南。

最新版本:
https://www.mashangxue123.com/tensorflow/tf2-tutorials-keras-save_and_restore_models.html

英文版本:
https://tensorflow.google.cn/alpha/tutorials/keras/save_and_restore_models

翻译建议PR:
https://github.com/mashangxue/tensorflow2-zh/edit/master/r2/tutorials/keras/save_and_restore_models.md

    原文作者:马上学123
    原文地址: https://zhuanlan.zhihu.com/p/67793617
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞