Python numpy.round() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def resample(image, scan, new_spacing=[1,1,1]):
    # Determine current pixel spacing
    spacing = map(float, ([scan[0].SliceThickness] + scan[0].PixelSpacing))
    spacing = np.array(list(spacing))
    
    #scan[2].SliceThickness


    resize_factor = spacing / new_spacing
    new_real_shape = image.shape * resize_factor
    new_shape = np.round(new_real_shape)
    real_resize_factor = new_shape / image.shape
    new_spacing = spacing / real_resize_factor
    
    image = scipy.ndimage.interpolation.zoom(image, real_resize_factor, mode='nearest')  ### early orig modified 
    
    return image, new_spacing 

Example 2

def resample(image, scan, new_spacing=[1,1,1]):
    # Determine current pixel spacing
    spacing = map(float, ([scan[0].SliceThickness] + scan[0].PixelSpacing))
    spacing = np.array(list(spacing))

    resize_factor = spacing / new_spacing
    new_real_shape = image.shape * resize_factor
    new_shape = np.round(new_real_shape)
    real_resize_factor = new_shape / image.shape
    new_spacing = spacing / real_resize_factor
    
    #image = scipy.ndimage.interpolation.zoom(image, real_resize_factor)   # nor mode= "wrap"/xxx, nor cval=-1024 can ensure that the min and max values are unchanged .... # cval added
    image = scipy.ndimage.interpolation.zoom(image, real_resize_factor, mode='nearest')  ### early orig modified 
    #image = scipy.ndimage.zoom(image, real_resize_factor, order=1)    # order=1 bilinear , preserves the min and max of the image -- pronbably better for us (also faster than spkine/order=2)
    
    #image = scipy.ndimage.zoom(image, real_resize_factor, mode='nearest', order=1)    # order=1 bilinear , preserves the min and max of the image -- pronbably better for us (also faster than spkine/order=2)
    
    return image, new_spacing 

Example 3

def handle_data(self, data):
        if self.target_shares == 0:
            assert 0 not in self.portfolio.positions
            self.order(self.sid(0), 10)
            self.target_shares = 10
            return
        else:
            print(self.portfolio)
            assert self.portfolio.positions[0]['amount'] == \
                self.target_shares, "Orders not filled immediately."
            assert self.portfolio.positions[0]['last_sale_price'] == \
                data[0].price, "Orders not filled at current price."

        self.order_target_value(self.sid(0), 20)
        self.target_shares = np.round(20 / data[0].price)

        if isinstance(self.sid(0), Equity):
            self.target_shares = np.round(20 / data[0].price)
        if isinstance(self.sid(0), Future):
            self.target_shares = np.round(
                20 / (data[0].price * self.sid(0).multiplier)) 

Example 4

def round_to_chunk_size(self, chunk_size, offset=Vec(0,0,0, dtype=int)):
    """
    Align a potentially non-axis aligned bbox to the grid by rounding it
    to the nearest grid lines.

    Required:
      chunk_size: arraylike (x,y,z), the size of chunks in the 
                    dataset e.g. (64,64,64)
    Optional:
      offset: arraylike (x,y,z), the starting coordinate of the dataset
    """
    chunk_size = np.array(chunk_size, dtype=np.float32)
    result = self.clone()
    result = result - offset
    result.minpt = np.round(result.minpt / chunk_size) * chunk_size
    result.maxpt = np.round(result.maxpt / chunk_size) * chunk_size
    return result + offset 

Example 5

def draw_bounding_boxes(image, gt_boxes, im_info):
  num_boxes = gt_boxes.shape[0]
  gt_boxes_new = gt_boxes.copy()
  gt_boxes_new[:,:4] = np.round(gt_boxes_new[:,:4].copy() / im_info[2])
  disp_image = Image.fromarray(np.uint8(image[0]))

  for i in xrange(num_boxes):
    this_class = int(gt_boxes_new[i, 4])
    disp_image = _draw_single_box(disp_image, 
                                gt_boxes_new[i, 0],
                                gt_boxes_new[i, 1],
                                gt_boxes_new[i, 2],
                                gt_boxes_new[i, 3],
                                'N%02d-C%02d' % (i, this_class),
                                FONT,
                                color=STANDARD_COLORS[this_class % NUM_COLORS])

  image[0, :] = np.array(disp_image)
  return image 

Example 6

def quantized_forward_pass_cost_and_output(inputs, weights, scales, biases=None, quantization_method='round',
        hidden_activations='relu', output_activation = 'relu', computation_calc='adds', seed=None):
    """
    Do a forward pass of a discretized network, and return the (pseudo) computational cost and final output.

    :param inputs: A (n_samples, n_dims) array of inputs
    :param weights: A list of (n_dim_in, n_dim_out) arrays of weights
    :param scales: A list of (w[0].shape[0], w[1].shape[0], ...) scales to multiply/divide by before/after the quantization
    :param quantization_method: The method of quantization/discretization: 'round', 'uniform', None, ....
    :param seed: A random seed or number generator
    :return: n_ops, output_activation: Where:
        n_ops is the (scalar) number of commputations required in the forward pass (only striclty true if scale is 'round', .. otherwise it's some kind of surrogate.
        output_activation: A (n_samples, n_dims) array representing the output activations.
    """
    activations = scaled_quantized_forward_pass(inputs= inputs, weights=weights, biases=biases, scales=scales,
        hidden_activations=hidden_activations, output_activations=output_activation, quantization_method=quantization_method, rng=seed)
    spike_activations = activations[1::3]
    n_ops = sparse_nn_flop_count(spike_activations, [w.shape[1] for w in weights], mode=computation_calc) if quantization_method is not None else None
    return n_ops, activations[-1] 

Example 7

def resample(patient, new_spacing=[1,1,1]):
    scan = get_scan(patient)
    image = get_3D_data(patient)
    
    # Determine current pixel spacing
    spacing = np.array([scan[0].SliceThickness] + scan[0].PixelSpacing, dtype=np.float32)

    resize_factor = spacing / new_spacing
    new_real_shape = image.shape * resize_factor
    new_shape = np.round(new_real_shape)
    real_resize_factor = new_shape / image.shape
    new_spacing = spacing / real_resize_factor
    
    image = nd.interpolation.zoom(image, real_resize_factor, mode='nearest')
    
    return image

# For the sake of testing the network, we'll be using the sample dataset
# For this, we'll use the maximum size of the image
# and PAD any image with -1000 values which is smaller than that

#PS: only the first dimension is different in sample dataset
#which is not the case in actual dataset 

Example 8

def did_succeed( output_dict, cond_dict ):
    '''
    Used in rejection sampling:
    for each row, determine if cond is satisfied
    for every cond in cond_dict

    success is hardcoded as round(label) being exactly equal
    to the integer in cond_dict
    '''

    #definition success:
    def is_win(key):
        #cond=np.squeeze(cond_dict[key])
        cond=np.squeeze(cond_dict[key])
        val=np.squeeze(output_dict[key])
        condition= np.round(val)==cond
        return condition

    scoreboard=[is_win(key) for key in cond_dict]
    #print('scoreboard', scoreboard)
    all_victories_bool=np.logical_and.reduce(scoreboard)
    return all_victories_bool.flatten() 

Example 9

def func_impl(self, x):
        objval, invalid = None, False
        for i, t in enumerate(x):
            if t < self.p_min[i] or t > self.p_max[i]:
                objval = float("inf")
                invalid = True
        if not invalid:
            x = [int(np.round(x_t)) if p_t is "integer" else x_t for p_t, x_t in zip(self.p_types, x)]
            objval = self._coef * self.func(x)

        print("{:5d} | {} | {:>15.5f}".format(
            self.n_eval,
            " | ".join(["{:>15.5f}".format(t) for t in x]),
            self._coef * objval
        ))

        self.n_eval += 1
        return objval 

Example 10

def clean_height(df):
    v = df.VALUE.astype(float)
    idx = df.VALUEUOM.fillna('').apply(lambda s: 'in' in s.lower()) | df.MIMIC_LABEL.apply(lambda s: 'in' in s.lower())
    v.ix[idx] = np.round(v[idx] * 2.54)
    return v

# ETCO2: haven't found yet
# Urine output: ambiguous units (raw ccs, ccs/kg/hr, 24-hr, etc.)
# Tidal volume: tried to substitute for ETCO2 but units are ambiguous
# Glascow coma scale eye opening
# Glascow coma scale motor response
# Glascow coma scale total
# Glascow coma scale verbal response
# Heart Rate
# Respiratory rate
# Mean blood pressure 

Example 11

def test_sample_NormalFloatHyperparameter(self):
        hp = NormalFloatHyperparameter("nfhp", 0, 1)

        def actual_test():
            rs = np.random.RandomState(1)
            counts_per_bin = [0 for i in range(11)]
            for i in range(100000):
                value = hp.sample(rs)
                index = min(max(int((round(value + 0.5)) + 5), 0), 9)
                counts_per_bin[index] += 1

            self.assertEqual([0, 4, 138, 2113, 13394, 34104, 34282, 13683,
                              2136, 146, 0], counts_per_bin)

            return counts_per_bin

        self.assertEqual(actual_test(), actual_test()) 

Example 12

def round_solution_pool(pool, constraints):

    pool.distinct().sort()
    P = pool.P
    L0_reg_ind = np.isnan(constraints['coef_set'].C_0j)
    L0_max = constraints['L0_max']
    rounded_pool = SolutionPool(P)

    for solution in pool.solutions:
        # sort from largest to smallest coefficients
        feature_order = np.argsort([-abs(x) for x in solution])
        rounded_solution = np.zeros(shape=(1, P))
        l0_norm_count = 0
        for k in range(0, P):
            j = feature_order[k]
            if not L0_reg_ind[j]:
                rounded_solution[0, j] = np.round(solution[j], 0)
            elif l0_norm_count < L0_max:
                rounded_solution[0, j] = np.round(solution[j], 0)
                l0_norm_count += L0_reg_ind[j]

        rounded_pool.add(objvals=np.nan, solutions=rounded_solution)

    rounded_pool.distinct().sort()
    return rounded_pool 

Example 13

def resize(im, target_size, max_size):
    """
    only resize input image to target size and return scale
    :param im: BGR image input by opencv
    :param target_size: one dimensional size (the short side)
    :param max_size: one dimensional max size (the long side)
    :return:
    """
    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    # prevent bigger axis from being more than max_size:
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
    return im, im_scale 

Example 14

def resize(im, target_size, max_size):
    """
    only resize input image to target size and return scale
    :param im: BGR image input by opencv
    :param target_size: one dimensional size (the short side)
    :param max_size: one dimensional max size (the long side)
    :return:
    """
    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
    return im, im_scale 

Example 15

def generateTickText(tickValue, ratio, baseline=False):
    multStep = 1000.
    multipliers = [
        dict(suffix='', mult=pow(multStep, 0)),
        dict(suffix='k', mult=pow(multStep, 1)),
        dict(suffix='M', mult=pow(multStep, 2)),
        dict(suffix='G', mult=pow(multStep, 3)),
    ]
    multiplier = multipliers[0]
    for m in multipliers:
        if np.round(tickValue / m['mult'], decimals=2) >= 1:
            multiplier = m
    baseText = float('%.3g' % np.round(tickValue / multiplier['mult'], decimals=2))
    baseText = int(baseText) if int(baseText) == baseText else baseText
    suffix = multiplier['suffix']
    percent = float('%.1f' % (100 * ratio))
    percent = int(percent) if percent == int(percent) else percent
    return '%s%s [%s%%]' % (baseText, suffix, percent) 

Example 16

def generateTickText(tickValue, ratio, baseline = False):
    multStep = 1000.
    multipliers = [
        dict(suffix='', mult=pow(multStep, 0)),
        dict(suffix='k', mult=pow(multStep, 1)),
        dict(suffix='M', mult=pow(multStep, 2)),
        dict(suffix='G', mult=pow(multStep, 3)),
    ]
    multiplier = multipliers[0]
    for m in multipliers:
        if np.round(tickValue / m['mult']) >= 1:
            multiplier = m
    baseText = float('%.3g' % np.round(tickValue / multiplier['mult']))
    baseText = int(baseText) if int(baseText) == baseText else baseText
    suffix = multiplier['suffix']
    percent = float('%.1f' % (100 * ratio))
    percent = int(percent) if percent == int(percent) else percent
    return '%s%s [%s%%]' % (baseText, suffix, percent) 

Example 17

def apply_regr(x, y, w, h, tx, ty, tw, th):
	try:
		cx = x + w/2.
		cy = y + h/2.
		cx1 = tx * w + cx
		cy1 = ty * h + cy
		w1 = math.exp(tw) * w
		h1 = math.exp(th) * h
		x1 = cx1 - w1/2.
		y1 = cy1 - h1/2.
		x1 = int(round(x1))
		y1 = int(round(y1))
		w1 = int(round(w1))
		h1 = int(round(h1))

		return x1, y1, w1, h1

	except ValueError:
		return x, y, w, h
	except OverflowError:
		return x, y, w, h
	except Exception as e:
		print(e)
		return x, y, w, h 

Example 18

def prep_im_for_blob(im, pixel_means, target_size, max_size):
    """Mean subtract and scale an image for use in a blob."""
    im = im.astype(np.float32, copy=False)
    im -= pixel_means
    im = im / 127.5
    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    # Prevent the biggest axis from being more than MAX_SIZE
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale,
                    interpolation=cv2.INTER_LINEAR)

    return im, im_scale 

Example 19

def _gene_embed_space(self,vec):
        shape = vec.shape
        vec = vec.flatten()
        combo_neg_idx = np.array([1 if vec[i]<0  else 0 for i in range(len(vec))])

        vec_pos = np.abs(vec)
        int_part = np.floor(vec_pos)
        frac_part = np.round(vec_pos - int_part,2)
        
        bi_int_part=[] #?????????????signature???????
        for i in range(len(int_part)):
            bi=list(bin(int(int_part[i]))[2:])
            bie = [0] * (16 - len(bi))
            bie.extend(bi)
            bi_int_part.append(np.array(bie,dtype=np.uint16))
        bi_int_part = np.array(bi_int_part)

        sig = []
        for i in range(len(bi_int_part)):
            sig.append(bi_int_part[i][10])
        sig = np.array(sig).reshape(shape)
        return np.array(bi_int_part),frac_part.reshape(shape),combo_neg_idx.reshape(shape),sig 

Example 20

def _gene_embed_space(self,vec):
        shape = vec.shape
        vec = vec.flatten()
        combo_neg_idx = np.array([1 if vec[i]<0  else 0 for i in range(len(vec))])

        vec_pos = np.abs(vec)
        int_part = np.floor(vec_pos)
        frac_part = np.round(vec_pos - int_part,2)
        
        bi_int_part=[] #?????????????signature???????
        for i in range(len(int_part)):
            bi=list(bin(int(int_part[i]))[2:])
            bie = [0] * (16 - len(bi))
            bie.extend(bi)
            bi_int_part.append(np.array(bie,dtype=np.uint16))
        bi_int_part = np.array(bi_int_part)

        sig = []
        for i in range(len(bi_int_part)):
            sig.append(bi_int_part[i][10])
        sig = np.array(sig).reshape(shape)
        return np.array(bi_int_part),frac_part.reshape(shape),combo_neg_idx.reshape(shape),sig 

Example 21

def crop_pad(image, corner, shape):
    ndim = len(corner)
    corner = [int(round(c)) for c in corner]
    shape = [int(round(s)) for s in shape]
    original = image.shape[-ndim:]
    zipped = zip(corner, shape, original)

    if np.any(c < 0 or c + s > o for (c, s, o) in zipped):
        no_padding = [(0, 0)] * (image.ndim - ndim)
        padding = [(max(-c, 0), max(c + s - o, 0)) for (c, s, o) in zipped]
        corner = [c + max(-c, 0) for c in corner]
        image_temp = np.pad(image, no_padding + padding, mode=str('constant'))
    else:
        image_temp = image

    no_crop = [slice(o+1) for o in image.shape[:-ndim]]
    crop = [slice(c, c+s) for (c, s) in zip(corner, shape)]
    return image_temp[no_crop + crop] 

Example 22

def tslsr(image):
    """
        Takes an image then returns (mask, circles, rois for each circle)
    """
    image_hsv = cv2.cvtColor(cv2.GaussianBlur(image, (7, 7), 0), cv2.COLOR_BGR2HSV)
    mask = __filterRedColor(image_hsv)
    circles = __findCircles(mask)
    rois = []
    if circles is not None:
        circles = np.round(circles[0, :]).astype("int")
        for (x, y, r) in circles:
            rois.append(__extract_sign_roi(image, (x, y, r)))

    return (mask, circles, rois) 

Example 23

def apply_regr(x, y, w, h, tx, ty, tw, th):
	try:
		cx = x + w/2.
		cy = y + h/2.
		cx1 = tx * w + cx
		cy1 = ty * h + cy
		w1 = math.exp(tw) * w
		h1 = math.exp(th) * h
		x1 = cx1 - w1/2.
		y1 = cy1 - h1/2.
		x1 = int(round(x1))
		y1 = int(round(y1))
		w1 = int(round(w1))
		h1 = int(round(h1))

		return x1, y1, w1, h1

	except ValueError:
		return x, y, w, h
	except OverflowError:
		return x, y, w, h
	except Exception as e:
		print(e)
		return x, y, w, h 

Example 24

def compute_centroids(object_matrix, preserve_ids=False, round_val=False):

    # if ids=true, then write a matrix equal to size of maximum
    # value, else, order in object label order

    # if round = true, round centroid coordinates to nearest integer
    # when rounding, TODO: make sure we don't leave the volume

    import skimage.measure as measure

    centroids = []
    # Threshold data
    rp = measure.regionprops(object_matrix)

    for r in rp:
        if round_val > 0:
            centroids.append(np.round(r.Centroid, round_val))
        else:
            centroids.append(r.Centroid)

    return centroids 

Example 25

def pareto_front(vals1, vals2, round_val=3):

    # butter and guns pareto front.  Removes points not on
    # the pareto frontier

    # round very similar vals
    vals1 = round(vals1, round_val)
    vals2 = round(vals2, round_val)

    v1_out = []
    v2_out = []
    idx_out = []
    for idx in range(0, len(vals1)):

        is_better = np.find(vals1 >= vals1[idx] and vals2 >= vals2[idx])
        if is_better is None:
            v1_out.append(vals1[idx])
            v2_out.append(vals2[idx])
            idx_out.append(idx)

    return v1_out, v2_out, idx_out 

Example 26

def _downsample_mask(X, pct):
    """ Create a boolean mask indicating which subset of X should be
    evaluated.
    """
    if pct < 1.0:
        Mask = np.zeros(X.shape, dtype=np.bool)
        m = X.shape[-2]
        n = X.shape[-1]
        nToEval = np.round(pct*m*n).astype(np.int32)
        idx = sobol(2, nToEval ,0)
        idx[0] = np.floor(m*idx[0])
        idx[1] = np.floor(n*idx[1])
        idx = idx.astype(np.int32)
        Mask[:,:,idx[0], idx[1]] = True
    else:
        Mask = np.ones(X.shape, dtype=np.bool)

    return Mask 

Example 27

def prepare_oae_PU4(known_transisitons):
    print("Learn from pre + action label",
          "*** INCOMPATIBLE MODEL! ***",
          sep="\n")
    N = known_transisitons.shape[1] // 2
    
    y = generate_oae_action(known_transisitons)

    ind = np.where(np.squeeze(combined(y[:,N:])) > 0.5)[0]
    
    y = y[ind]

    actions = oae.encode_action(known_transisitons, batch_size=1000).round()
    positive = np.concatenate((known_transisitons[:,:N], np.squeeze(actions)), axis=1)
    actions = oae.encode_action(y, batch_size=1000).round()
    negative = np.concatenate((y[:,:N], np.squeeze(actions)), axis=1)
    # random.shuffle(negative)
    # negative = negative[:len(positive)]
    # normalize
    return (default_networks['PUDiscriminator'], *prepare_binary_classification_data(positive, negative)) 

Example 28

def prepare_oae_PU5(known_transisitons):
    print("Learn from pre + suc + action label",
          "*** INCOMPATIBLE MODEL! ***",
          sep="\n")
    N = known_transisitons.shape[1] // 2
       
    y = generate_oae_action(known_transisitons)
    
    ind = np.where(np.squeeze(combined(y[:,N:])) > 0.5)[0]
    
    y = y[ind]

    actions = oae.encode_action(known_transisitons, batch_size=1000).round()
    positive = np.concatenate((known_transisitons, np.squeeze(actions)), axis=1)
    actions = oae.encode_action(y, batch_size=1000).round()
    negative = np.concatenate((y, np.squeeze(actions)), axis=1)
    # random.shuffle(negative)
    # negative = negative[:len(positive)]
    # normalize
    return (default_networks['PUDiscriminator'], *prepare_binary_classification_data(positive, negative)) 

Example 29

def puzzle_plot(p):
    p.setup()
    def name(template):
        return template.format(p.__name__)
    from itertools import islice
    configs = list(islice(p.generate_configs(9), 1000)) # be careful, islice is not immutable!!!
    import numpy.random as random
    random.shuffle(configs)
    configs = configs[:10]
    puzzles = p.generate(configs, 3, 3)
    print(puzzles.shape, "mean", puzzles.mean(), "stdev", np.std(puzzles))
    plot_image(puzzles[-1], name("{}.png"))
    plot_image(np.clip(puzzles[-1]+np.random.normal(0,0.1,puzzles[-1].shape),0,1),name("{}+noise.png"))
    plot_image(np.round(np.clip(puzzles[-1]+np.random.normal(0,0.1,puzzles[-1].shape),0,1)),name("{}+noise+round.png"))
    plot_grid(puzzles, name("{}s.png"))
    _transitions = p.transitions(3,3,configs=configs)
    print(_transitions.shape)
    transitions_for_show = \
        np.einsum('ba...->ab...',_transitions) \
          .reshape((-1,)+_transitions.shape[2:])
    print(transitions_for_show.shape)
    plot_grid(transitions_for_show, name("{}_transitions.png")) 

Example 30

def point_trans(ori_point, angle, ori_shape, new_shape):
    """ Transfrom the point from original to rotated image.
    Args:
        ori_point: Point coordinates in original image.
        angle: Rotate angle.
        ori_shape: The shape of original image.
        new_shape: The shape of rotated image.

    Returns:
        Numpy array of new point coordinates in rotated image.
    """
    dx = ori_point[0] - ori_shape[1] / 2.0
    dy = ori_point[1] - ori_shape[0] / 2.0

    t_x = round(dx * math.cos(angle) - dy * math.sin(angle) + new_shape[1] / 2.0)
    t_y = round(dx * math.sin(angle) + dy * math.cos(angle) + new_shape[0] / 2.0)
    return np.array((int(t_x), int(t_y))) 

Example 31

def predict_tf_once(day,start_date = '2016-10-1'):
    all_dataset = get_dataset(day)
    all_dataset = map(lambda x:x.ix[start_date:start_date],all_dataset)
    y_p_features = map(lambda user_id:tf_percent_model.resample_x_y_(all_dataset,user_id)[0].reshape(-1),get_full_user_ids())
    y_p_features_df = pd.DataFrame(y_p_features,index = get_full_user_ids())
    percent = pd.DataFrame.from_csv('./features/tensorflow_model/percent_model/%d.csv'%day)
    #percent = pd.DataFrame.from_csv('./features/tensorflow_model/percent_model/%d.csv'%2)
    #%%
    percent = percent[map(lambda x:'percent#%d'%x,range(_feature_length))]
    t = pd.DataFrame(index = percent.index)
    t[pd.Timestamp(start_date)+pd.Timedelta('%dd'%(day-1))] = (np.array(y_p_features_df)*percent).sum(axis=1)
    t = t.T
    t.to_csv('./result/predict_part/%d.csv'%day)
    real = int(np.round((np.array(y_p_features_df)*percent).sum().sum()))
    print (day,real)
    return (day,real) 

Example 32

def test_minmax_funcs_with_output(self):
        # Tests the min/max functions with explicit outputs
        mask = np.random.rand(12).round()
        xm = array(np.random.uniform(0, 10, 12), mask=mask)
        xm.shape = (3, 4)
        for funcname in ('min', 'max'):
            # Initialize
            npfunc = getattr(np, funcname)
            mafunc = getattr(numpy.ma.core, funcname)
            # Use the np version
            nout = np.empty((4,), dtype=int)
            try:
                result = npfunc(xm, axis=0, out=nout)
            except MaskError:
                pass
            nout = np.empty((4,), dtype=float)
            result = npfunc(xm, axis=0, out=nout)
            self.assertTrue(result is nout)
            # Use the ma version
            nout.fill(-999)
            result = mafunc(xm, axis=0, out=nout)
            self.assertTrue(result is nout) 

Example 33

def test_round(self):
        a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890],
                  mask=[0, 1, 0, 0, 0])
        assert_equal(a.round(), [1., 2., 3., 5., 6.])
        assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7])
        assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679])
        b = empty_like(a)
        a.round(out=b)
        assert_equal(b, [1., 2., 3., 5., 6.])

        x = array([1., 2., 3., 4., 5.])
        c = array([1, 1, 1, 0, 0])
        x[2] = masked
        z = where(c, x, -x)
        assert_equal(z, [1., 2., 0., -4., -5])
        c[0] = masked
        z = where(c, x, -x)
        assert_equal(z, [1., 2., 0., -4., -5])
        assert_(z[0] is masked)
        assert_(z[1] is not masked)
        assert_(z[2] is masked) 

Example 34

def test_round_with_scalar(self):
        # Testing round with scalar/zero dimension input
        # GH issue 2244
        a = array(1.1, mask=[False])
        assert_equal(a.round(), 1)

        a = array(1.1, mask=[True])
        assert_(a.round() is masked)

        a = array(1.1, mask=[False])
        output = np.empty(1, dtype=float)
        output.fill(-9999)
        a.round(out=output)
        assert_equal(output, 1)

        a = array(1.1, mask=[False])
        output = array(-9999., mask=[True])
        a.round(out=output)
        assert_equal(output[()], 1)

        a = array(1.1, mask=[True])
        output = array(-9999., mask=[False])
        a.round(out=output)
        assert_(output[()] is masked) 

Example 35

def dec_round(num, dprec=4, rnd='down', rto_zero=False):
    """
    Round up/down numeric ``num`` at specified decimal ``dprec``.

    Parameters
    ----------
    num: float
    dprec: int
        Decimal position for truncation.
    rnd: str (default: 'down')
        Set as 'up' or 'down' to return a rounded-up or rounded-down value.
    rto_zero: bool (default: False)
        Use a *round-towards-zero* method, e.g., ``floor(-3.5) == -3``.

    Returns
    ----------
    float (default: rounded-up)
    """
    dprec = 10**dprec
    if rnd == 'up' or (rnd == 'down' and rto_zero and num < 0.):
        return np.ceil(num*dprec)/dprec
    elif rnd == 'down' or (rnd == 'up' and rto_zero and num < 0.):
        return np.floor(num*dprec)/dprec
    return np.round(num, dprec) 

Example 36

def sample_output(self, val):
        vocabulary = self.get_vocabulary()
        if self.one_hot:
            vals = [ np.argmax(r) for r in val ]
            ox_val = [vocabulary[obj] for obj in list(vals)]
            string = "".join(ox_val)
            return string
        else:
            val = np.reshape(val, [-1])
            val *= len(vocabulary)/2.0
            val += len(vocabulary)/2.0
            val = np.round(val)

            val = np.maximum(0, val)
            val = np.minimum(len(vocabulary)-1, val)

            ox_val = [self.get_character(obj) for obj in list(val)]
            string = "".join(ox_val)
            return string 

Example 37

def __init__(self, opt_engine, topK=16, grid_size=None, nps=320, model_name='tmp'):
        QWidget.__init__(self)
        self.topK = topK
        if grid_size is None:
            self.n_grid = int(np.ceil(np.sqrt(self.topK)))
            self.grid_size = (self.n_grid, self.n_grid) # (width, height)
        else:
            self.grid_size = grid_size
        self.select_id = 0
        self.ims = None
        self.vis_results = None
        self.width = int(np.round(nps/ (4 * float(self.grid_size[1])))) * 4
        self.winWidth = self.width * self.grid_size[0]
        self.winHeight = self.width * self.grid_size[1]

        self.setFixedSize(self.winWidth, self.winHeight)
        self.opt_engine = opt_engine
        self.frame_id = -1
        self.sr = save_result.SaveResult(model_name=model_name) 

Example 38

def sresample(src, outshape):
    """ Simple 3d array resampling

    Inputs:
      src -- a ndimensional array (dim>2)
      outshape -- fixed output shape for the first 2 dimensions

    Outputs:
       hout -- resulting n-dimensional array

    """

    inh, inw = src.shape[:2]
    outh, outw = outshape
    hslice = (np.arange(outh) * (inh-1.)/(outh-1.)).round().astype(int)
    wslice = (np.arange(outw) * (inw-1.)/(outw-1.)).round().astype(int)
    hout = src[hslice, :][:, wslice]
    return hout.copy() 

Example 39

def stationInfo(stnds, varname, name, titlestr=None, alttitle=None, lflatten=False, lmon=False,):
  ''' helper to generate an axes title with station info '''
  if stnds.hasAxis('station'): nstn = len(stnds.axes['station']) # number of stations        
  else: nstn = 1 # single station
  if stnds.name[:3].lower() == 'obs' and varname in stnds:
      ec = stnds[varname] # some variables are not present everywhere
      if ec.hasAxis('time') and ec.time.units[:3].lower() == 'mon': units = 'mon.'
      elif ec.hasAxis('year') and ec.year.units.lower() == 'year': units = 'yrs.'
      else: units = 'mon.' if lmon else 'yrs.'
      mask = ec.data_array.mask if isinstance(ec.data_array,np.ma.MaskedArray) else np.isnan(ec.data_array) 
      if lflatten: rec_len = (ec.data_array.size - mask.sum()) # valid years in obs/EC
      else: rec_len = int(np.round(ec.data_array.shape[-1] - mask.sum(axis=-1).mean())) # valid years in obs/EC
      if titlestr: axtitle = titlestr.format(name,nstn,rec_len) # axes label
      else: axtitle = "{:s} (#{:d}, {:d} {:s})".format(name,nstn,rec_len,units) # axes label
  else:
      if alttitle: axtitle = alttitle.format(name,nstn) # axes label
      elif titlestr: axtitle = titlestr.format(name,nstn) # axes label
      else: axtitle = "{:s} (#{:d}, WRF only)".format(name,nstn) # axes label
  return axtitle

# function to compute some statistics and print them 

Example 40

def get_fft_mel_mat(nfft, sr=8000, nfilts=None, width=1.0, minfrq=20, maxfrq=None, constamp=0):
    if nfilts is None:
        nfilts = nfft
    if maxfrq is None:
        maxfrq = sr // 2
    wts = np.zeros((nfilts, nfft//2+1))
    fftfrqs = np.arange(0, nfft//2+1) / (1. * nfft) * (sr)
    minmel = hz2mel(minfrq)
    maxmel = hz2mel(maxfrq)
    binfrqs = mel2hz(minmel + np.arange(0, nfilts+2) / (nfilts+1.) * (maxmel - minmel))
    # binbin = np.round(binfrqs / maxfrq * nfft)
    for i in range(nfilts):
        fs = binfrqs[[i+0, i+1, i+2]]
        fs = fs[1] + width * (fs - fs[1])
        loslope = (fftfrqs - fs[0]) / (fs[1] - fs[0])
        hislope = (fs[2] - fftfrqs) / (fs[2] - fs[1])
        wts[i, :] = np.maximum(0, np.minimum(loslope, hislope))
    return wts 

Example 41

def get_fft_mel_mat(nfft, sr=8000, nfilts=None, width=1.0, minfrq=20, maxfrq=None, constamp=0):
    if nfilts is None:
        nfilts = nfft
    if maxfrq is None:
        maxfrq = sr // 2
    wts = np.zeros((nfilts, nfft//2+1))
    fftfrqs = np.arange(0, nfft//2+1) / (1. * nfft) * (sr)
    minmel = hz2mel(minfrq)
    maxmel = hz2mel(maxfrq)
    binfrqs = mel2hz(minmel + np.arange(0, nfilts+2) / (nfilts+1.) * (maxmel - minmel))
    # binbin = np.round(binfrqs / maxfrq * nfft)
    for i in range(nfilts):
        fs = binfrqs[[i+0, i+1, i+2]]
        fs = fs[1] + width * (fs - fs[1])
        loslope = (fftfrqs - fs[0]) / (fs[1] - fs[0])
        hislope = (fs[2] - fftfrqs) / (fs[2] - fs[1])
        wts[i, :] = np.maximum(0, np.minimum(loslope, hislope))
    return wts 

Example 42

def CSMToBinary(D, Kappa):
    """
    Turn a cross-similarity matrix into a binary cross-simlarity matrix
    If Kappa = 0, take all neighbors
    If Kappa < 1 it is the fraction of mutual neighbors to consider
    Otherwise Kappa is the number of mutual neighbors to consider
    """
    N = D.shape[0]
    M = D.shape[1]
    if Kappa == 0:
        return np.ones((N, M))
    elif Kappa < 1:
        NNeighbs = int(np.round(Kappa*M))
    else:
        NNeighbs = Kappa
    J = np.argpartition(D, NNeighbs, 1)[:, 0:NNeighbs]
    I = np.tile(np.arange(N)[:, None], (1, NNeighbs))
    V = np.ones(I.size)
    [I, J] = [I.flatten(), J.flatten()]
    ret = sparse.coo_matrix((V, (I, J)), shape=(N, M))
    return ret.toarray() 

Example 43

def print_word_vectors(word_vectors, write_path):
    """
    This function prints the collection of word vectors to file, in a plain textual format. 
    """

    f_write = codecs.open(write_path, 'w', 'utf-8')

    for key in word_vectors:
        print >>f_write, key, " ".join(map(unicode, numpy.round(word_vectors[key], decimals=6))) 

    print "Printed", len(word_vectors), "word vectors to:", write_path 

Example 44

def trataGroups(objeto):

    current = list(filter(None.__ne__, objeto))
    current = np.sort(current, axis=0)

    for i in range(len(current[0])):
        current_ = [j[i] for j in current]
        mean_ = np.round(np.mean(current_, axis=0), 4)
        deviation_ = np.round(np.std(current_, axis=0, ddof=1), 4)

    return [mean_, deviation_] 

Example 45

def trataGroups(objeto):

    current = list(filter(None.__ne__, objeto))

    mean_ = np.round(np.mean(current, axis=0), 4)
    deviation_ = np.round(np.std(current, axis=0, ddof=1), 4)
    fivecent = np.round(np.percentile(current, 5.0, axis=0), 4)

    # confidence intervals
    lowci = np.round(np.percentile(current, 2.5, axis=0), 4)
    highci = np.round(np.percentile(current, 97.5, axis=0), 4)

    return [mean_, deviation_, fivecent, current, lowci, highci] 

Example 46

def PA(samples, variables):
    datasets = 5000
    eig_vals = []

    for i in range(datasets):
        data = np.random.standard_normal((variables, samples))
        cor_ = np.corrcoef(data)
        eig_vals.append(np.sort(np.linalg.eig(cor_)[0])[::-1])


    quantile = (np.round(np.percentile(eig_vals, 95.0, axis=0), 4))
    mean_ = (np.round(np.mean(eig_vals, axis=0), 4))
    return quantile 

Example 47

def get_line_region(self, position, name=''):
        """Creates a line region at the given position (start_x, start_y, end_x, end_y),
        inclusive.

        Args:
            position: Position of the line region (start_x, start_y, end_x, end_y).
            name: Name of the region.

        Returns:
            Line region.
        """

        start_idx = self.get_index(position[:2])
        end_idx = self.get_index(position[2:])

        x_diff = start_idx % self.x.samples - end_idx % self.x.samples
        y_diff = int(start_idx / self.x.samples) - int(end_idx / self.x.samples)

        num_points = max(np.abs([x_diff, y_diff]))
        point_indices = []

        for ii in range(num_points + 1):

            x_position = start_idx % self.x.samples - np.round(ii / num_points * x_diff)
            y_position = int(start_idx / self.x.samples) - np.round(ii / num_points * y_diff)
            point_indices.append(int(x_position + self.x.samples * y_position))

        return reg.LineRegion(point_indices, position, name=name) 

Example 48

def seq(start, stop, step=1):
	n = int(round((stop - start)/float(step)))
	if n > 1:
		return([start + step*i for i in range(n+1)])
	else:
		return([]) 

Example 49

def draw_circles(image,cands,origin,spacing):
	#make empty matrix, which will be filled with the mask
	image_mask = np.zeros(image.shape, dtype=np.int16)

	#run over all the nodules in the lungs
	for ca in cands.values:
		#get middel x-,y-, and z-worldcoordinate of the nodule
		#radius = np.ceil(ca[4])/2     ## original:  replaced the ceil with a very minor increase of 1% ....
		radius = (ca[4])/2 + 0.51 * spacing[0]  # increasing by circa half of distance in z direction .... (trying to capture wider region/border for learning ... and adress the rough net .
    
		coord_x = ca[1]
		coord_y = ca[2]
		coord_z = ca[3]
		image_coord = np.array((coord_z,coord_y,coord_x))

		#determine voxel coordinate given the worldcoordinate
		image_coord = world_2_voxel(image_coord,origin,spacing)

		#determine the range of the nodule
		#noduleRange = seq(-radius, radius, RESIZE_SPACING[0])  # original, uniform spacing 
		noduleRange_z = seq(-radius, radius, spacing[0])
		noduleRange_y = seq(-radius, radius, spacing[1])
		noduleRange_x = seq(-radius, radius, spacing[2])

          #x = y = z = -2
		#create the mask
		for x in noduleRange_x:
			for y in noduleRange_y:
				for z in noduleRange_z:
					coords = world_2_voxel(np.array((coord_z+z,coord_y+y,coord_x+x)),origin,spacing)
					#if (np.linalg.norm(image_coord-coords) * RESIZE_SPACING[0]) < radius:  ### original (contrained to a uniofrm RESIZE)
					if (np.linalg.norm((image_coord-coords) * spacing)) < radius:
						image_mask[int(np.round(coords[0])),int(np.round(coords[1])),int(np.round(coords[2]))] = int(1)
	

	return image_mask 

Example 50

def seq(start, stop, step=1):
	n = int(round((stop - start)/float(step)))
	if n > 1:
		return([start + step*i for i in range(n+1)])
	else:
		return([]) 
点赞