The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def calc_excel_npv(rate, values): orig_npv = np.npv(rate, values) excel_npv = orig_npv/(1+rate) return excel_npv
Example 2
def mirr(values, finance_rate, reinvest_rate): """ Modified internal rate of return. Parameters ---------- values : array_like Cash flows (must contain at least one positive and one negative value) or nan is returned. The first value is considered a sunk cost at time zero. finance_rate : scalar Interest rate paid on the cash flows reinvest_rate : scalar Interest rate received on the cash flows upon reinvestment Returns ------- out : float Modified internal rate of return """ values = np.asarray(values, dtype=np.double) n = values.size pos = values > 0 neg = values < 0 if not (pos.any() and neg.any()): return np.nan numer = np.abs(npv(reinvest_rate, values*pos)) denom = np.abs(npv(finance_rate, values*neg)) return (numer/denom)**(1.0/(n - 1))*(1 + reinvest_rate) - 1
Example 3
def test_npv(self): assert_almost_equal( np.npv(0.05, [-15000, 1500, 2500, 3500, 4500, 6000]), 122.89, 2)
Example 4
def mirr(values, finance_rate, reinvest_rate): """ Modified internal rate of return. Parameters ---------- values : array_like Cash flows (must contain at least one positive and one negative value) or nan is returned. The first value is considered a sunk cost at time zero. finance_rate : scalar Interest rate paid on the cash flows reinvest_rate : scalar Interest rate received on the cash flows upon reinvestment Returns ------- out : float Modified internal rate of return """ values = np.asarray(values, dtype=np.double) n = values.size pos = values > 0 neg = values < 0 if not (pos.any() and neg.any()): return np.nan numer = np.abs(npv(reinvest_rate, values*pos)) denom = np.abs(npv(finance_rate, values*neg)) return (numer/denom)**(1.0/(n - 1))*(1 + reinvest_rate) - 1
Example 5
def test_npv(self): assert_almost_equal( np.npv(0.05, [-15000, 1500, 2500, 3500, 4500, 6000]), 122.89, 2)
Example 6
def mirr(values, finance_rate, reinvest_rate): """ Modified internal rate of return. Parameters ---------- values : array_like Cash flows (must contain at least one positive and one negative value) or nan is returned. The first value is considered a sunk cost at time zero. finance_rate : scalar Interest rate paid on the cash flows reinvest_rate : scalar Interest rate received on the cash flows upon reinvestment Returns ------- out : float Modified internal rate of return """ values = np.asarray(values, dtype=np.double) n = values.size pos = values > 0 neg = values < 0 if not (pos.any() and neg.any()): return np.nan numer = np.abs(npv(reinvest_rate, values*pos)) denom = np.abs(npv(finance_rate, values*neg)) return (numer/denom)**(1.0/(n - 1))*(1 + reinvest_rate) - 1
Example 7
def test_npv(self): assert_almost_equal( np.npv(0.05, [-15000, 1500, 2500, 3500, 4500, 6000]), 122.89, 2)
Example 8
def mirr(values, finance_rate, reinvest_rate): """ Modified internal rate of return. Parameters ---------- values : array_like Cash flows (must contain at least one positive and one negative value) or nan is returned. The first value is considered a sunk cost at time zero. finance_rate : scalar Interest rate paid on the cash flows reinvest_rate : scalar Interest rate received on the cash flows upon reinvestment Returns ------- out : float Modified internal rate of return """ values = np.asarray(values, dtype=np.double) n = values.size pos = values > 0 neg = values < 0 if not (pos.any() and neg.any()): return np.nan numer = np.abs(npv(reinvest_rate, values*pos)) denom = np.abs(npv(finance_rate, values*neg)) return (numer/denom)**(1.0/(n - 1))*(1 + reinvest_rate) - 1
Example 9
def test_npv(self): assert_almost_equal( np.npv(0.05, [-15000, 1500, 2500, 3500, 4500, 6000]), 122.89, 2)
Example 10
def mirr(values, finance_rate, reinvest_rate): """ Modified internal rate of return. Parameters ---------- values : array_like Cash flows (must contain at least one positive and one negative value) or nan is returned. The first value is considered a sunk cost at time zero. finance_rate : scalar Interest rate paid on the cash flows reinvest_rate : scalar Interest rate received on the cash flows upon reinvestment Returns ------- out : float Modified internal rate of return """ values = np.asarray(values, dtype=np.double) n = values.size pos = values > 0 neg = values < 0 if not (pos.any() and neg.any()): return np.nan numer = np.abs(npv(reinvest_rate, values*pos)) denom = np.abs(npv(finance_rate, values*neg)) return (numer/denom)**(1.0/(n - 1))*(1 + reinvest_rate) - 1
Example 11
def test_npv(self): assert_almost_equal( np.npv(0.05, [-15000, 1500, 2500, 3500, 4500, 6000]), 122.89, 2)
Example 12
def calc_npv(r, ubi, inputs, n): x = np.zeros((ubi['Years Post Transfer'], n)) y = np.zeros((ubi['Years Post Transfer'], n)) # iterate through years of benefits for j in range(1, ubi['Years Post Transfer'] + 1): # sum benefits during program if(j < r): x[j - 1] += ubi['Expected baseline per capita consumption (nominal USD)']* \ np.power((1.0 + inputs['UBI']['Expected annual consumption increase (without the UBI program)']), float(j))* \ inputs['UBI']['Work participation adjustment'] + \ ubi['Annual quantity of transfer money used for immediate consumtion (pre-discounting)'] # benefits after program else: x[j - 1] += ubi['Expected baseline per capita consumption (nominal USD)']* \ np.power((1.0 + inputs['UBI']['Expected annual consumption increase (without the UBI program)']), float(j)) # investments calculations for k in range(n): if(j < r + inputs['UBI']['Duration of investment benefits (in years) - UBI'][k]): x[j - 1][k] += ubi['Annual return for each year of transfer investments (pre-discounting)'][k]* \ np.min([j, inputs['UBI']['Duration of investment benefits (in years) - UBI'][k], \ r, (inputs['UBI']['Duration of investment benefits (in years) - UBI'][k] + r - j)]) if(j > r): x[j - 1][k] += ubi['Value eventually returned from one years investment (pre-discounting)'][k] # log transform and subtact baseline y[j - 1] = np.log(x[j - 1]) y[j - 1] -= np.log(ubi['Expected baseline per capita consumption (nominal USD)']* \ np.power((1.0 + inputs['UBI']['Expected annual consumption increase (without the UBI program)']), float(j))) # npv on yearly data z = np.zeros(n) for i in range(n): z[i] = np.npv(inputs['Shared']['Discount rate'][i], y[:, i]) return z
Example 13
def mirr(values, finance_rate, reinvest_rate): """ Modified internal rate of return. Parameters ---------- values : array_like Cash flows (must contain at least one positive and one negative value) or nan is returned. The first value is considered a sunk cost at time zero. finance_rate : scalar Interest rate paid on the cash flows reinvest_rate : scalar Interest rate received on the cash flows upon reinvestment Returns ------- out : float Modified internal rate of return """ values = np.asarray(values, dtype=np.double) n = values.size pos = values > 0 neg = values < 0 if not (pos.any() and neg.any()): return np.nan numer = np.abs(npv(reinvest_rate, values*pos)) denom = np.abs(npv(finance_rate, values*neg)) return (numer/denom)**(1.0/(n - 1))*(1 + reinvest_rate) - 1
Example 14
def test_npv(self): assert_almost_equal( np.npv(0.05, [-15000, 1500, 2500, 3500, 4500, 6000]), 122.89, 2)
Example 15
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 16
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 17
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 18
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 19
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 20
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)