The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def gen_pruned_features(name): print name feature_dir = 'data/feature_' + args.domain + \ '_' + str(args.n_boxes) + 'boxes/' + name + '/' n_clips = len(glob.glob(feature_dir + BOX_FEATURE + '*.npy')) for clip in xrange(1, n_clips+1): pruned_boxes = np.load(feature_dir + BOX_FEATURE + '{:04d}.npy'.format(clip)) # (50, args.n_boxes, 4) roisavg = np.load(feature_dir + 'roisavg{:04d}.npy'.format(clip)) # (50, args.n_boxes, 512) pruned_roisavg = np.zeros((50, args.n_boxes, 512)) for frame in xrange(50): for box_id in xrange(args.n_boxes): if not np.array_equal(pruned_boxes[frame][box_id], np.zeros((4))): pruned_roisavg[frame][box_id] = roisavg[frame][box_id] np.save('{}pruned_roisavg{:04d}'.format(feature_dir, clip), pruned_roisavg)
Example 2
def test_intersection_com_mock_2(self): ls = LineString([(1, 1, 9.48024060e+08), (2, 2, 9.49363260e+08), (3, 1, 9.51868860e+08)]) poly = Polygon([(1, 1), (1, 3), (4, 3), (4, 1), (1, 1)]) self.traj2.intersection_shapely = MagicMock(return_value=ls) response = self.traj2.intersection_shapely(poly) ls = np.array(ls) trajMock = self.traj2.to_Trajectory(response) traj = Trajectory(ls[:, 0], ls[:, 1], ls[:, 2]) assert (np.array_equal(trajMock.getX(), traj.getX())) assert (np.array_equal(trajMock.getY(), traj.getY())) assert (np.array_equal(trajMock.getTime(), traj.getTime()))
Example 3
def _test_FileSink(self, format): filename = self._tempfileName('sink_%s' % format) complexData = format.startswith('C') typecode = format[1] dataFormat, dataType = self.TYPEMAP[typecode] indata = [dataType(x) for x in xrange(16)] source = sb.DataSource(dataFormat=dataFormat) sink = sb.FileSink(filename, midasFile=True) source.connect(sink) sb.start() source.push(indata, complexData=complexData, EOS=True) sink.waitForEOS() hdr, outdata = bluefile.read(filename) self.assertEqual(hdr['format'], format) if complexData: if dataFormat in ('double', 'float'): outdata = list(self._flatten(outdata)) else: outdata = outdata.flatten() self.assertTrue(numpy.array_equal(indata, outdata), msg="Format '%s' %s != %s" % (format, indata, outdata))
Example 4
def _test_FileSource(self, format): filename = self._tempfileName('source_%s' % format) complexData = format.startswith('C') typecode = format[1] dataFormat, dataType = self.TYPEMAP[typecode] indata = self._generateSourceData(format, 16) hdr = bluefile.header(1000, format) bluefile.write(filename, hdr, indata) source = sb.FileSource(filename, midasFile=True, dataFormat=dataFormat) sink = sb.DataSink() source.connect(sink) sb.start() outdata = sink.getData(eos_block=True) if complexData: self.assertEqual(sink.sri().mode, 1) if dataFormat in ('float', 'double'): outdata = bulkio_helpers.bulkioComplexToPythonComplexList(outdata) else: outdata = numpy.reshape(outdata, (len(outdata)/2,2)) else: self.assertEqual(sink.sri().mode, 0) self.assertTrue(numpy.array_equal(indata, outdata), msg='%s != %s' % (indata, outdata))
Example 5
def Verify(**kwargs): ''' Verification for the signature i/p: msg: the string sent by the sender (z,c): vectors in Zq, the signature A : numpy array, Verification Key dimension nxm T : the matrix AS mod q ,it is used in the Verification of the signature ''' msg, z, c, A, T, sd, eta, m, k, q = kwargs['msg'], kwargs['z'], kwargs['c'], kwargs['A'], kwargs['T'], kwargs['sd'], kwargs['eta'], kwargs['m'], kwargs['k'], kwargs['q'] norm_bound = eta * sd * np.sqrt(m) # checks for norm of z being small and that H(Az-Tc mod q,msg) hashes to c vec = util.vector_to_Zq(np.array(np.matmul(A,z) - np.matmul(T,c)), q) hashedList = util.hash_to_baseb(vec, msg, 3, k) print hashedList, c if np.sqrt(z.dot(z)) <= norm_bound and np.array_equal(c, hashedList): return True else: return False
Example 6
def test_non_aligned_read(): delete_layer() cv, data = create_layer(size=(128,64,64,1), offset=(0,0,0)) # the last dimension is the number of channels assert cv[31:65,0:64,0:64].shape == (34,64,64,1) assert np.all(cv[31:65,0:64,0:64] == data[31:65,:64,:64,:]) # read a single pixel delete_layer() cv, data = create_layer(size=(64,64,64,1), offset=(0,0,0)) # the last dimension is the number of channels assert cv[22:23,22:23,22:23].shape == (1,1,1,1) assert np.all(cv[22:23,22:23,22:23] == data[22:23,22:23,22:23,:]) # Test steps (negative steps are not supported) img1 = cv[::2, ::2, ::2, :] img2 = cv[:, :, :, :][::2, ::2, ::2, :] assert np.array_equal(img1, img2)
Example 7
def __setitem__(self, slices, img): imgshape = list(img.shape) if len(imgshape) == 3: imgshape = imgshape + [ self.num_channels ] maxsize = list(self.bounds.maxpt) + [ self.num_channels ] minsize = list(self.bounds.minpt) + [ 0 ] slices = generate_slices(slices, minsize, maxsize) bbox = Bbox.from_slices(slices) slice_shape = list(bbox.size3()) + [ slices[3].stop - slices[3].start ] if not np.array_equal(imgshape, slice_shape): raise ValueError("Illegal slicing, Image shape: {} != {} Slice Shape".format(imgshape, slice_shape)) if self.path.protocol == 'boss': self.upload_boss_image(img, bbox.minpt) else: self.upload_image(img, bbox.minpt)
Example 8
def test_dense_to_sparse(self): """ Test if `dense_to_sparse` works properly.""" with tf.Session().as_default(): dense = tf.constant([[1., 2., 0.], [0., 0., 3.]], dtype=tf.float32) sparse = dense_to_sparse(dense) self.assertTrue(np.array_equal(sparse.indices.eval(), np.array([[0, 0], [0, 1], [1, 2]]))) self.assertTrue(np.array_equal(sparse.values.eval(), np.array([1., 2., 3.]))) mask = tf.constant([[0, 1, 0], [1, 0, 0]], dtype=tf.int32) masked = dense_to_sparse(dense, mask) self.assertTrue(np.array_equal(masked.indices.eval(), np.array([[0, 1], [1, 0]]))) self.assertTrue(np.array_equal(masked.values.eval(), np.array([2., 0.])))
Example 9
def __init__(self, test_model=False, verify_model=True): model = Word2Vec.load(modelfile) if(test_model): acc = model.accuracy(questionfile) logger.info("Test model " + modelfile + " in " + questionfile) self.vector_size = model.vector_size self.vocab_size = len(model.wv.vocab) + 1 self.word2index = self.GetWord2Index(model) self.index2word = self.GetIndex2Word(model) self.wordvector = self.GetWordVector(model) if(verify_model): logger.info("Verifing imported word2vec model") random_state = check_random_state(12) check_index = random_state.randint(low=0, high=self.vocab_size-2,size=1000) for index in check_index: word_wv = model.wv.index2word[index] word_our = self.index2word[index+1] #print(index, word_wv, word_our) assert word_wv == word_our assert model.wv.vocab[word_our].index == self.word2index[word_our] - 1 assert np.array_equal(model.wv[word_our], self.wordvector[self.word2index[word_our]]) logger.info("Imported word2vec model is verified")
Example 10
def __init__(self, test_model=False, verify_model=True): model = Word2Vec.load(modelfile) if(test_model): acc = model.accuracy(questionfile) logger.info("Test model " + modelfile + " in " + questionfile) self.vector_size = model.vector_size self.vocab_size = len(model.wv.vocab) + 1 self.word2index = self.GetWord2Index(model) self.index2word = self.GetIndex2Word(model) self.wordvector = self.GetWordVector(model) if(verify_model): logger.info("Verifing imported word2vec model") random_state = check_random_state(12) check_index = random_state.randint(low=0, high=self.vocab_size-2,size=1000) for index in check_index: word_wv = model.wv.index2word[index] word_our = self.index2word[index+1] #print(index, word_wv, word_our) assert word_wv == word_our assert model.wv.vocab[word_our].index == self.word2index[word_our] - 1 assert np.array_equal(model.wv[word_our], self.wordvector[self.word2index[word_our]]) logger.info("Imported word2vec model is verified")
Example 11
def __init__(self, test_model=False, verify_model=True): model = Word2Vec.load(modelfile) if(test_model): acc = model.accuracy(questionfile) logger.info("Test model " + modelfile + " in " + questionfile) self.vector_size = model.vector_size self.vocab_size = len(model.wv.vocab) + 1 self.word2index = self.GetWord2Index(model) self.index2word = self.GetIndex2Word(model) self.wordvector = self.GetWordVector(model) if(verify_model): logger.info("Verifing imported word2vec model") random_state = check_random_state(12) check_index = random_state.randint(low=0, high=self.vocab_size-2,size=1000) for index in check_index: word_wv = model.wv.index2word[index] word_our = self.index2word[index+1] #print(index, word_wv, word_our) assert word_wv == word_our assert model.wv.vocab[word_our].index == self.word2index[word_our] - 1 assert np.array_equal(model.wv[word_our], self.wordvector[self.word2index[word_our]]) logger.info("Imported word2vec model is verified")
Example 12
def test_vectorized_jaccard_sim(): # The vectorized version of jaccard similarity is 20x faster, but it is # harder to understand. Compute it the simple way and compare to the # vectorized version def jaccard_sim(X, Y): assert len(X) == len(Y) a = np.sum((X == 1) & (Y == 1)) d = np.sum((X == 0) & (Y == 0)) return a / float(len(X) - d) def binary_sim(mat): n_rows = mat.shape[0] out = np.empty((n_rows, n_rows), dtype=np.float64) for i in range(n_rows): out[i][i] = 1. for j in range(0, i): out[i][j] = jaccard_sim(mat[i], mat[j]) out[j][i] = out[i][j] return out # Simulate 200 queries with 100 shared page ids matrix = np.random.rand(200, 100) > 0.7 simple = binary_sim(matrix) vectorized = mjolnir.norm_query._binary_sim(matrix) assert np.array_equal(simple, vectorized)
Example 13
def test_classify_image_in_memory(): # create mineral classifier instance with image loading enabled mc = mineral.MineralClassification(libraryFilenames[0], in_memory=True) # for each of the test images for image_file_name in test_classifyImage_testFilenames: # classify the test image classified_file_name = image_file_name[:-4] + "_class_test.hdr" mc.classify_image(image_file_name, classified_file_name) actual = spectral.open_image(classified_file_name) # classified image for comparison expected = spectral.open_image(image_file_name[:-4] + "_class.hdr") # verify that every pixel has the same classification assert numpy.array_equal(expected.asarray(), actual.asarray()) # test files for classify image threshold and subset tests
Example 14
def _core_dist(point, neighbors, dist_function): """ Computes the core distance of a point. Core distance is the inverse density of an object. Args: point (np.array): array of dimensions (n_features,) point to compute core distance of neighbors (np.ndarray): array of dimensions (n_neighbors, n_features): array of all other points in object class dist_dunction (func): function to determine distance between objects func args must be [np.array, np.array] where each array is a point Returns: core_dist (float) inverse density of point """ n_features = np.shape(point)[0] n_neighbors = np.shape(neighbors)[1] numerator = 0 for row in neighbors: if not np.array_equal(point, row): numerator += (1/dist_function(point, row))**n_features core_dist = (numerator / (n_neighbors)) ** (-1/n_features) return core_dist
Example 15
def test_intersection_com_mock(self): ls = LineString([(1.5, 1, 9.48024060e+08), (2, 2, 9.49363260e+08), (3, 2, 9.51868860e+08), (4, 3, 9.53208060e+08)]) poly = Polygon([(1, 1), (1, 3), (4, 3), (4, 1), (1, 1)]) self.traj.intersection_shapely = MagicMock(return_value=ls) response = self.traj.intersection_shapely(poly) ls = np.array(ls) trajMock = self.traj.to_Trajectory(response) traj = Trajectory(ls[:, 0], ls[:, 1], ls[:, 2]) assert (np.array_equal(trajMock.getX(), traj.getX())) assert (np.array_equal(trajMock.getY(), traj.getY())) assert (np.array_equal(trajMock.getTime(), traj.getTime()))
Example 16
def test_array_equal(self): res = np.array_equal(np.array([1, 2]), np.array([1, 2])) assert_(res) assert_(type(res) is bool) res = np.array_equal(np.array([1, 2]), np.array([1, 2, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equal(np.array([1, 2]), np.array([3, 4])) assert_(not res) assert_(type(res) is bool) res = np.array_equal(np.array([1, 2]), np.array([1, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equal(np.array(['a'], dtype='S1'), np.array(['a'], dtype='S1')) assert_(res) assert_(type(res) is bool) res = np.array_equal(np.array([('a', 1)], dtype='S1,u4'), np.array([('a', 1)], dtype='S1,u4')) assert_(res) assert_(type(res) is bool)
Example 17
def test_slice_metadata_using_already_sliced_data_df(self): data = pd.DataFrame([[2, 3], [5, 6], [11, 12]], index=["a", "b", "d"], columns=["f", "g"]) row_meta = pd.DataFrame([["rm1", "rm2"],["rm3", "rm4"], ["rm5", "rm6"],["rm7", "rm8"]], index=["a", "b", "c", "d"], columns=["row_field1", "row_field2"]) col_meta = pd.DataFrame([["cm1", "cm2"],["cm3", "cm4"],["cm5", "cm6"]], index=["e", "f", "g"], columns=["col_field1", "col_field2"]) e_row_meta = pd.DataFrame([["rm1", "rm2"],["rm3", "rm4"],["rm7", "rm8"]], index=["a", "b", "d"], columns=["row_field1", "row_field2"]) e_col_meta = pd.DataFrame([["cm3", "cm4"],["cm5", "cm6"]], index=["f", "g"], columns=["col_field1", "col_field2"]) out_gct = dry.slice_metadata_using_already_sliced_data_df(data, row_meta, col_meta) self.assertTrue(np.array_equal(out_gct.row_metadata_df, e_row_meta), "row_metadata_df is wrong: \n{}".format(out_gct.row_metadata_df)) self.assertTrue(np.array_equal(out_gct.col_metadata_df, e_col_meta), "col_metadata_df is wrong: \n{}".format(out_gct.col_metadata_df))
Example 18
def test_make_norm_ndarray(self): ROW_SUBSET_FIELD = "pr_probe_normalization_group" COL_SUBSET_FIELD = "det_normalization_group_vector" row_df = pd.DataFrame(np.array([["8350", "1"], ["8350", "1"], ["8350", "2"], ["8350", "2"]]), index=["r1", "r2", "r3", "r4"], columns=["pr_gene_id", "pr_probe_normalization_group"]) col_df = pd.DataFrame(np.array([["G-0022", "1,1"], ["G-0022", "1,1"], ["G-0022", "1,2"], ["G-0022", "2,2"], ["G-0022", "2,2"]]), index=["c1", "c2", "c3", "c4", "c5"], columns=["det_plate", "det_normalization_group_vector"]) e_norm_ndarray = np.array([[1, 1, 1, 2, 2], [1, 1, 1, 2, 2], [1, 1, 2, 2, 2], [1, 1, 2, 2, 2]]) norm_ndarray = tear.make_norm_ndarray(row_df, col_df, ROW_SUBSET_FIELD, COL_SUBSET_FIELD) self.assertTrue(np.array_equal(norm_ndarray, e_norm_ndarray), ("\nExpected out:\n{} " + "\nActual out:\n{}").format(e_norm_ndarray, norm_ndarray))
Example 19
def test_save_txt_and_load_txt(): # Get sample data set dataset = get_dataset() # Get in-memory string handle with StringIO() as handle: # Save text to handle dataset.save_txt(handle) handle.seek(0) # Load text from handle dataset2 = LtrDataset.load_txt(handle) # Assert that everything loaded correctly assert_true(np.array_equal(dataset.feature_vectors, dataset2.feature_vectors)) assert_true(np.array_equal(dataset.relevance_scores, dataset2.relevance_scores)) assert_true(np.array_equal(dataset.query_pointer, dataset2.query_pointer)) assert_true(np.array_equal(dataset.query_ids, dataset2.query_ids))
Example 20
def test_save_and_load(): # Get sample data set dataset = get_dataset() # Get in-memory binary handle with BytesIO() as handle: # Save binary to handle dataset.save(handle) handle.seek(0) # Load binary from handle dataset2 = LtrDataset.load(handle) # Assert that everything loaded correctly assert_true(np.array_equal(dataset.feature_vectors, dataset2.feature_vectors)) assert_true(np.array_equal(dataset.relevance_scores, dataset2.relevance_scores)) assert_true(np.array_equal(dataset.query_pointer, dataset2.query_pointer)) assert_true(np.array_equal(dataset.query_ids, dataset2.query_ids))
Example 21
def test_backward(): # Construct test data x = Variable(np.array([5., 3., 3., 1., 0.])) g = Variable(np.ones(5)) expected_result = np.array([0.7717692057972512, 0.562087881852882, 1.4058826163342215, 0.9213241007090265, 1.3389361953066183]) # Generate object lcse = LogCumsumExp() # Run forward and backward pass lcse.forward((x.data,)) result = lcse.backward((x.data, ), (g.data, )) # Assert that the result equals the expected result assert_true(np.array_equal(result[0], expected_result))
Example 22
def d2_at_Z(self, z=15.0): def is_z(ax): for axis in np.array([[z,0,0],[0,z,0],[0,0,z]]): if np.array_equal(ax, axis): return True return False if is_z(self._lattice[0]): self.swap_axis((2,1,0)) return None elif is_z(self._lattice[1]): self.swap_axis((0,2,1)) return None else: # print("DO NOTHING...") return None
Example 23
def test_prepare_fcma_data(): images = io.load_images_from_dir(data_dir, suffix=suffix) mask = io.load_boolean_mask(mask_file) conditions = io.load_labels(epoch_file) raw_data, _, labels = prepare_fcma_data(images, conditions, mask) expected_raw_data = np.load(expected_dir / 'expected_raw_data.npy') assert len(raw_data) == len(expected_raw_data), \ 'numbers of epochs do not match in test_prepare_fcma_data' for idx in range(len(raw_data)): assert np.allclose(raw_data[idx], expected_raw_data[idx]), \ 'raw data do not match in test_prepare_fcma_data' assert np.array_equal(labels, expected_labels), \ 'the labels do not match in test_prepare_fcma_data' from brainiak.fcma.preprocessing import RandomType images = io.load_images_from_dir(data_dir, suffix=suffix) random_raw_data, _, _ = prepare_fcma_data(images, conditions, mask, random=RandomType.REPRODUCIBLE) assert len(random_raw_data) == len(expected_raw_data), \ 'numbers of epochs do not match in test_prepare_fcma_data' images = io.load_images_from_dir(data_dir, suffix=suffix) random_raw_data, _, _ = prepare_fcma_data(images, conditions, mask, random=RandomType.UNREPRODUCIBLE) assert len(random_raw_data) == len(expected_raw_data), \ 'numbers of epochs do not match in test_prepare_fcma_data'
Example 24
def test_weighted_var(): es = brainiak.eventseg.event.EventSegment(2) D = np.zeros((8, 4)) for t in range(4): D[t, :] = (1/np.sqrt(4/3)) * np.array([-1, -1, 1, 1]) for t in range(4, 8): D[t, :] = (1 / np.sqrt(4 / 3)) * np.array([1, 1, -1, -1]) mean_pat = D[[0, 4], :].T weights = np.zeros((8, 2)) weights[:, 0] = [1, 1, 1, 1, 0, 0, 0, 0] weights[:, 1] = [0, 0, 0, 0, 1, 1, 1, 1] assert np.array_equal( es.calc_weighted_event_var(D, weights, mean_pat), [0, 0]),\ "Failed to compute variance with 0/1 weights" weights[:, 0] = [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5] weights[:, 1] = [0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1] true_var = (4 * 0.5 * 12)/(6 - 5/6) * np.ones(2) / 4 assert np.allclose( es.calc_weighted_event_var(D, weights, mean_pat), true_var),\ "Failed to compute variance with fractional weights"
Example 25
def test_sentence_to_seq(sentence_to_seq): sentence = 'this is a test sentence' vocab_to_int = {'<PAD>': 0, '<EOS>': 1, '<UNK>': 2, 'this': 3, 'is': 6, 'a': 5, 'sentence': 4} output = sentence_to_seq(sentence, vocab_to_int) assert len(output) == 5,\ 'Wrong length. Found a length of {}'.format(len(output)) assert output[3] == 2,\ 'Missing <UNK> id.' assert np.array_equal(output, [3, 6, 5, 2, 4]),\ 'Incorrect ouput. Found {}'.format(output) _print_success_message()
Example 26
def test_CentreTransform_caching(make_random_data): # Generate an initial set of data x, mu, std = make_random_data # Apply the CentreTransform to the first dataset to preserve the mean x_copy = x.copy() center_transformer = CentreTransform() center_transformer(x_copy) # Now apply the center transform to a matrix that has been translated x_translated = x + 3.0 * mu x_expected = x_translated - mu x_produced = center_transformer(x_translated) # Check that the transformer used the mean mu instead of the translated # mean which was 3 * mu in this case above assert np.array_equal(x_expected, x_produced)
Example 27
def test_StandardiseTransform_caching(make_random_data): # Generate an initial set of data x, mu, std = make_random_data # Apply the CentreTransform to the first dataset to preserve the mean x_copy = x.copy() center_transformer = CentreTransform() center_transformer(x_copy) # Now apply the center transform to a matrix translated by 2 * mu x_translated = x + 3.0 * mu x_expected = x_translated - mu x_produced = center_transformer(x_translated) # Check that the transformer used the mean mu instead of the translated # mean which was 4 * mu in this case above assert np.array_equal(x_expected, x_produced)
Example 28
def test_atoms_to_system(self): """Tests that an ASE Atoms is succesfully converted to a System object. """ class NaClFactory(SimpleCubicFactory): "A factory for creating NaCl (B1, Rocksalt) lattices." bravais_basis = [[0, 0, 0], [0, 0, 0.5], [0, 0.5, 0], [0, 0.5, 0.5], [0.5, 0, 0], [0.5, 0, 0.5], [0.5, 0.5, 0], [0.5, 0.5, 0.5]] element_basis = (0, 1, 1, 0, 1, 0, 0, 1) nacl = NaClFactory()(symbol=["Na", "Cl"], latticeconstant=5.6402) system = System.from_atoms(nacl) self.assertTrue(np.array_equal(nacl.get_positions(), system.get_positions())) self.assertTrue(np.array_equal(nacl.get_initial_charges(), system.get_initial_charges())) self.assertTrue(np.array_equal(nacl.get_atomic_numbers(), system.get_atomic_numbers())) self.assertTrue(np.array_equal(nacl.get_chemical_symbols(), system.get_chemical_symbols())) self.assertTrue(np.array_equal(nacl.get_cell(), system.get_cell())) self.assertTrue(np.array_equal(nacl.get_pbc(), system.get_pbc())) self.assertTrue(np.array_equal(nacl.get_scaled_positions(), system.get_scaled_positions()))
Example 29
def test_matrix(self): desc = CoulombMatrix(n_atoms_max=5, flatten=False) cm = desc.create(H2O) # Test against assumed values q = H2O.get_initial_charges() p = H2O.get_positions() norm = np.linalg.norm assumed = np.array( [ [0.5*q[0]**2.4, q[0]*q[1]/(norm(p[0]-p[1])), q[0]*q[2]/(norm(p[0]-p[2]))], [q[1]*q[0]/(norm(p[1]-p[0])), 0.5*q[1]**2.4, q[1]*q[2]/(norm(p[1]-p[2]))], [q[2]*q[0]/(norm(p[2]-p[0])), q[2]*q[1]/(norm(p[2]-p[1])), 0.5*q[2]**2.4], ] ) zeros = np.zeros((5, 5)) zeros[:3, :3] = assumed assumed = zeros self.assertTrue(np.array_equal(cm, assumed))
Example 30
def test_cputensor_add(): """TODO.""" Y = ng.make_axis(length=2) M = ng.make_axis(length=2) N = ng.make_axis(length=2) a = ng.constant(np.array([3, 5], dtype=np.float32), [Y]) b = ng.constant(np.array([3, 5], dtype=np.float32), [Y]) c = a + b with executor(c) as ex: result = ex() assert np.array_equal(result, [6, 10]) np_a = np.array([[1, 2], [3, 4]], dtype=np.float32) np_b = np.array([[1, 2], [3, 4]], dtype=np.float32) np_c = np_a + np_b a = ng.constant(np_a, [M, N]) b = ng.constant(np_b, [M, N]) c = a + b with executor(c) as ex: result = ex() assert np.array_equal(result, np_c)
Example 31
def test_cputensor_dot(): Y = ng.make_axis(length=2) M = ng.make_axis(length=1) N = ng.make_axis(length=3) np_a = np.array([[1, 2, 3]], dtype=np.float32) np_b = np.array([[1, 2], [2, 3], [3, 4]], dtype=np.float32) np_c = np.dot(np_a, np_b) a = ng.constant(np_a, [M, N]).named('a') b = ng.constant(np_b, [N, Y]).named('b') c = ng.dot(a, b) with executor(c) as ex: result = ex() assert np.array_equal(result, np_c)
Example 32
def test_cputensor_multiply_constant(): """TODO.""" M = ng.make_axis(length=1) N = ng.make_axis(length=3) np_a = np.array([[1, 2, 3]], dtype=np.float32) np_c = np.multiply(np_a, 2) a = ng.constant(np_a, [M, N]) b = ng.constant(2) c = ng.multiply(a, b) with executor(c) as ex: result = ex() print(result) assert np.array_equal(result, np_c)
Example 33
def test_cputensor_mlp(): """TODO.""" D = ng.make_axis(length=3) H = ng.make_axis(length=2) N = ng.make_axis(length=1) np_x = np.array([[1, 2, 3]], dtype=np.float32) np_w = np.array([[1, 1], [1, 1], [1, 1]], dtype=np.float32) np_b = np.array([1, 2], dtype=np.float32) np_c = np.dot(np_x, np_w) + np_b x = ng.constant(np_x, [N, D]) w = ng.constant(np_w, [D, H]) b = ng.constant(np_b, [H]) wx = ng.dot(x, w) c = wx + b with executor(c) as ex: result = ex() print(result) print(np_c) assert np.array_equal(result, np_c)
Example 34
def test_idempotent_axes_a(): """ Test test axes transformations with autodiff, case a, reference test """ with ExecutorFactory() as ex: axes = ng.make_axes([ng.make_axis(3), ng.make_axis(1)]) w = ng.variable(axes, initial_value=np.ones((3, 1))) result = w + w result = ng.cast_axes(result, axes) cost = ng.sum(result, reduction_axes=axes) grad = ng.deriv(cost, w) grad_comp = ex.executor(grad) cost_comp = ex.executor(cost) cost_comp_val = cost_comp() grad_comp_val = grad_comp() grad_comp_np = np.ones((3, 1)) * 2. assert cost_comp_val == 6.0 assert np.array_equal(grad_comp_val, grad_comp_np)
Example 35
def test_idempotent_axes_b(): """ Test test axes transformations with autodiff, case b, with broadcast applied to the same tensor """ with ExecutorFactory() as ex: axes = ng.make_axes([ng.make_axis(3), ng.make_axis(1)]) w = ng.variable(axes, initial_value=np.ones((3, 1))) l = ng.broadcast(w, axes) r = ng.broadcast(w, axes) result = ng.add(l, r) result = ng.cast_axes(result, axes) cost = ng.sum(result, reduction_axes=axes) grad = ng.deriv(cost, w) grad_comp = ex.executor(grad) cost_comp = ex.executor(cost) assert cost_comp() == 6.0 assert np.array_equal(grad_comp(), np.ones((3, 1)) * 2.)
Example 36
def test_rolling_window(input_seq, batch_size, seq_len, strides): # This test checks if the rolling window works # We check if the first two samples in each batch are strided by strides # Truncate input sequence such that last section that doesn't fit in a batch # is thrown away input_seq = input_seq[:seq_len * batch_size * (len(input_seq) // seq_len // batch_size)] data_array = {'X': input_seq, 'y': np.roll(input_seq, axis=0, shift=-1)} time_steps = seq_len it_array = SequentialArrayIterator(data_arrays=data_array, time_steps=time_steps, stride=strides, batch_size=batch_size, tgt_key='y', shuffle=False) for idx, iter_val in enumerate(it_array): # Start of the array needs to be time_steps * idx assert np.array_equal(iter_val['X'][0, strides:time_steps], iter_val['X'][1, :time_steps - strides]) assert np.array_equal(iter_val['y'][0, strides:time_steps], iter_val['y'][1, :time_steps - strides])
Example 37
def test_np_layout_shuffle(): # set up bsz = 8 C, H, W, N = 3, 28, 28, bsz C, R, S, K = 3, 5, 5, 32 # image dim-shuffle np_tf_image = np.random.randn(N, H, W, C) np_ng_image = np_layout_shuffle(np_tf_image, "NHWC", "CDHWN") np_tf_image_reverse = np_layout_shuffle(np_ng_image, "CDHWN", "NHWC") assert np.array_equal(np_tf_image, np_tf_image_reverse) # filter dim-shuffle np_tf_weight = np.random.randn(R, S, C, K) np_ng_weight = np_layout_shuffle(np_tf_weight, "RSCK", "CTRSK") np_tf_weight_reverse = np_layout_shuffle(np_ng_weight, "CTRSK", "RSCK") assert np.array_equal(np_tf_weight, np_tf_weight_reverse)
Example 38
def test_reduce_max_keepdims(): data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32) assert np.array_equal(import_and_compute('ReduceMax', data), np.max(data, keepdims=True)) assert np.array_equal(import_and_compute('ReduceMax', data, axes=(0,)), np.max(data, keepdims=True, axis=(0,))) assert np.array_equal(import_and_compute('ReduceMax', data, axes=(1,)), np.max(data, keepdims=True, axis=(1,))) assert np.array_equal(import_and_compute('ReduceMax', data, axes=(2,)), np.max(data, keepdims=True, axis=(2,))) assert np.array_equal(import_and_compute('ReduceMax', data, axes=(0, 1)), np.max(data, keepdims=True, axis=(0, 1))) assert np.array_equal(import_and_compute('ReduceMax', data, axes=(0, 2)), np.max(data, keepdims=True, axis=(0, 2))) assert np.array_equal(import_and_compute('ReduceMax', data, axes=(1, 2)), np.max(data, keepdims=True, axis=(1, 2))) assert np.array_equal(import_and_compute('ReduceMax', data, axes=(0, 1, 2)), np.max(data, keepdims=True, axis=(0, 1, 2)))
Example 39
def test_reduce_min(): data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32) assert np.array_equal(import_and_compute('ReduceMin', data), np.min(data, keepdims=True)) assert np.array_equal(import_and_compute('ReduceMin', data, keepdims=0), np.min(data, keepdims=False)) assert np.array_equal(import_and_compute('ReduceMin', data, axes=(1,)), np.min(data, keepdims=True, axis=(1,))) assert np.array_equal(import_and_compute('ReduceMin', data, axes=(1,), keepdims=0), np.min(data, keepdims=False, axis=(1,))) assert np.array_equal(import_and_compute('ReduceMin', data, axes=(0, 2)), np.min(data, keepdims=True, axis=(0, 2))) assert np.array_equal(import_and_compute('ReduceMin', data, axes=(0, 2), keepdims=0), np.min(data, keepdims=False, axis=(0, 2))) assert np.array_equal(import_and_compute('ReduceMin', data, axes=(0, 1, 2)), np.min(data, keepdims=True, axis=(0, 1, 2))) assert np.array_equal(import_and_compute('ReduceMin', data, axes=(0, 1, 2), keepdims=0), np.min(data, keepdims=False, axis=(0, 1, 2)))
Example 40
def test_reduce_mean(): data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32) assert np.array_equal(import_and_compute('ReduceMean', data), np.mean(data, keepdims=True)) assert np.array_equal(import_and_compute('ReduceMean', data, keepdims=0), np.mean(data, keepdims=False)) assert np.array_equal(import_and_compute('ReduceMean', data, axes=(1,)), np.mean(data, keepdims=True, axis=(1,))) assert np.array_equal(import_and_compute('ReduceMean', data, axes=(1,), keepdims=0), np.mean(data, keepdims=False, axis=(1,))) assert np.array_equal(import_and_compute('ReduceMean', data, axes=(0, 2)), np.mean(data, keepdims=True, axis=(0, 2))) assert np.array_equal(import_and_compute('ReduceMean', data, axes=(0, 2), keepdims=0), np.mean(data, keepdims=False, axis=(0, 2))) assert np.array_equal(import_and_compute('ReduceMean', data, axes=(0, 1, 2)), np.mean(data, keepdims=True, axis=(0, 1, 2))) assert np.array_equal(import_and_compute('ReduceMean', data, axes=(0, 1, 2), keepdims=0), np.mean(data, keepdims=False, axis=(0, 1, 2)))
Example 41
def test_reduce_sum(): data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32) assert np.array_equal(import_and_compute('ReduceSum', data), np.sum(data, keepdims=True)) assert np.array_equal(import_and_compute('ReduceSum', data, keepdims=0), np.sum(data, keepdims=False)) assert np.array_equal(import_and_compute('ReduceSum', data, axes=(1,)), np.sum(data, keepdims=True, axis=(1,))) assert np.array_equal(import_and_compute('ReduceSum', data, axes=(1,), keepdims=0), np.sum(data, keepdims=False, axis=(1,))) assert np.array_equal(import_and_compute('ReduceSum', data, axes=(0, 2)), np.sum(data, keepdims=True, axis=(0, 2))) assert np.array_equal(import_and_compute('ReduceSum', data, axes=(0, 2), keepdims=0), np.sum(data, keepdims=False, axis=(0, 2))) assert np.array_equal(import_and_compute('ReduceSum', data, axes=(0, 1, 2)), np.sum(data, keepdims=True, axis=(0, 1, 2))) assert np.array_equal(import_and_compute('ReduceSum', data, axes=(0, 1, 2), keepdims=0), np.sum(data, keepdims=False, axis=(0, 1, 2)))
Example 42
def test_reduce_prod(): data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32) assert np.array_equal(import_and_compute('ReduceProd', data), np.prod(data, keepdims=True)) assert np.array_equal(import_and_compute('ReduceProd', data, keepdims=0), np.prod(data, keepdims=False)) assert np.array_equal(import_and_compute('ReduceProd', data, axes=(1,)), np.prod(data, keepdims=True, axis=(1,))) assert np.array_equal(import_and_compute('ReduceProd', data, axes=(1,), keepdims=0), np.prod(data, keepdims=False, axis=(1,))) assert np.array_equal(import_and_compute('ReduceProd', data, axes=(0, 2)), np.prod(data, keepdims=True, axis=(0, 2))) assert np.array_equal(import_and_compute('ReduceProd', data, axes=(0, 2), keepdims=0), np.prod(data, keepdims=False, axis=(0, 2))) assert np.array_equal(import_and_compute('ReduceProd', data, axes=(0, 1, 2)), np.prod(data, keepdims=True, axis=(0, 1, 2))) assert np.array_equal(import_and_compute('ReduceProd', data, axes=(0, 1, 2), keepdims=0), np.prod(data, keepdims=False, axis=(0, 1, 2)))
Example 43
def test_reduce_argmin(): def argmin(ndarray, axis, keepdims=False): res = np.argmin(ndarray, axis=axis) if keepdims: res = np.expand_dims(res, axis=axis) return res data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32) assert np.array_equal(import_and_compute('ArgMin', data, axis=0), argmin(data, keepdims=True, axis=0)) assert np.array_equal(import_and_compute('ArgMin', data, axis=0, keepdims=0), argmin(data, keepdims=False, axis=0)) assert np.array_equal(import_and_compute('ArgMin', data, axis=1), argmin(data, keepdims=True, axis=1)) assert np.array_equal(import_and_compute('ArgMin', data, axis=1, keepdims=0), argmin(data, keepdims=False, axis=1)) assert np.array_equal(import_and_compute('ArgMin', data, axis=2), argmin(data, keepdims=True, axis=2)) assert np.array_equal(import_and_compute('ArgMin', data, axis=2, keepdims=0), argmin(data, keepdims=False, axis=2))
Example 44
def test_reduce_argmax(): def argmax(ndarray, axis, keepdims=False): res = np.argmax(ndarray, axis=axis) if keepdims: res = np.expand_dims(res, axis=axis) return res data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32) assert np.array_equal(import_and_compute('ArgMax', data, axis=0), argmax(data, keepdims=True, axis=0)) assert np.array_equal(import_and_compute('ArgMax', data, axis=0, keepdims=0), argmax(data, keepdims=False, axis=0)) assert np.array_equal(import_and_compute('ArgMax', data, axis=1), argmax(data, keepdims=True, axis=1)) assert np.array_equal(import_and_compute('ArgMax', data, axis=1, keepdims=0), argmax(data, keepdims=False, axis=1)) assert np.array_equal(import_and_compute('ArgMax', data, axis=2), argmax(data, keepdims=True, axis=2)) assert np.array_equal(import_and_compute('ArgMax', data, axis=2, keepdims=0), argmax(data, keepdims=False, axis=2))
Example 45
def _kshape(x, k, initial_clustering=None): """ >>> from numpy.random import seed; seed(0) >>> _kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2) (array([0, 0, 1, 0]), array([[-1.2244258 , -0.35015476, 0.52411628, 1.05046429], [-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]])) """ m = x.shape[0] if initial_clustering is not None: assert len(initial_clustering) == m, "Initial assigment does not match column length" idx = initial_clustering else: idx = randint(0, k, size=m) print(idx) centroids = np.zeros((k,x.shape[1])) distances = np.empty((m, k)) for _ in range(100): old_idx = idx for j in range(k): centroids[j] = _extract_shape(idx, x, j, centroids[j]) for i in range(m): for j in range(k): distances[i,j] = 1 - max(_ncc_c(x[i], centroids[j])) idx = distances.argmin(1) if np.array_equal(old_idx, idx): break print(idx) return idx, centroids
Example 46
def _test_FileSourceType2000(self, format, subsize): filename = self._tempfileName('source_2000_%s' % format) complexData = format.startswith('C') typecode = format[1] dataFormat, dataType = self.TYPEMAP[typecode] frames = 4 indata = [self._generateSourceData(format, subsize) for x in xrange(frames)] hdr = bluefile.header(2000, format, subsize=subsize) bluefile.write(filename, hdr, indata) source = sb.FileSource(filename, midasFile=True, dataFormat=dataFormat) sink = sb.DataSink() source.connect(sink) sb.start() outdata = sink.getData(eos_block=True) if complexData: if format == 'CF': outdata = numpy.array(outdata, dtype=numpy.float32).view(numpy.complex64) outdata = numpy.reshape(outdata, (-1, subsize)) elif format == 'CD': outdata = numpy.array(outdata, dtype=numpy.float64).view(numpy.complex128) outdata = numpy.reshape(outdata, (-1, subsize)) else: outdata = numpy.reshape(outdata, (-1, subsize, 2)) self.assertEqual(sink.sri().mode, 1) else: self.assertEqual(sink.sri().mode, 0) self.assertTrue(numpy.array_equal(indata, outdata), msg="Format '%s' %s != %s" % (format, indata, outdata))
Example 47
def merge_h5(in_filenames, out_filename): """ Merge a list of h5 files """ out_h5 = h5.File(out_filename, 'a') for filename in in_filenames: if filename is None: continue in_h5 = h5.File(filename, 'r') for name in in_h5.keys(): # If the dataset already exists, # They must be equal or one must be all-zero. if name in out_h5.keys(): src_data, dest_data = in_h5[name][()], out_h5[name][()] if src_data.dtype.kind != 'S' and dest_data.dtype.kind != 'S': # Both numeric if not np.any(src_data): # Source is all zero. Do nothing. continue elif not np.any(dest_data): # Dest is all zero. Overwrite. del out_h5[name] h5.h5o.copy(in_h5.id, name, out_h5.id, name) else: # Both non-zero. Assert equality and do nothing. assert np.array_equal(src_data, dest_data) else: # Either are non-numeric. Assert equality and do nothing. assert np.array_equal(src_data, dest_data) else: # Only exists in src. Copy to dest. h5.h5o.copy(in_h5.id, name, out_h5.id, name) out_h5.flush() out_h5.close()
Example 48
def Verify(**kwargs): msg, A, m, n, sd, q, eta, z, c, kappa = kwargs['msg'], kwargs['A'], kwargs['m'], kwargs['n'], kwargs['sd'], kwargs['q'], kwargs['eta'], kwargs['z'], kwargs['c'], kwargs['kappa'] B2 = eta*sd*np.sqrt(m) reduced_prod = util.vector_to_Zq(np.matmul(A,z) + q*c, 2*q) #print np.sqrt(z.dot(z)),B2 #print LA.norm(z,np.inf),float(q)/4 if np.sqrt(z.dot(z)) > B2 or LA.norm(z,np.inf) >= float(q)/4: return False if np.array_equal(c, hash_iterative(np.array_str(reduced_prod)+msg, n, kappa)): return True return False
Example 49
def test_main(self): # set up mask = np.asarray([ [0, 0, 0, 1, 1], [0, 0, 0, 1, 0], [0, 1, 1, 1, 1], [0, 0, 0, 0, 0] ]) mask2 = np.ones((4, 5)) masks = np.array([mask]) # test area assert area(encode(mask)) == 7 assert area(encode(masks)[0]) == 7 assert np.array_equal(decode(encode(mask)), mask) # test iou assert isinstance(iou(encode(masks), encode(masks), [0]), np.ndarray) assert iou(encode(mask), encode(mask), [0]) == 1 assert equal(iou(encode(np.array([mask, mask])), encode(mask2), [0]), 7.0/20).all() # test toBbox assert isinstance(toBbox(masks), np.ndarray) assert np.equal(toBbox(encode(mask)), np.array([1, 0, 4, 3])).all() assert np.equal(toBbox(encode(mask2)), np.array([0, 0, 5, 4])).all()
Example 50
def test_box_filter_reflect_101(self): I = np.array(range(1, 50)).reshape(7, 7).astype(np.float32) r = 2 ret1 = cv.smooth.box_filter(I, r, normalize=True) ret2 = cv2.blur(I, (5,5), borderType=cv2.BORDER_DEFAULT) self.assertTrue(np.array_equal(ret1, ret2))