The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def seperateDataX(self, breaks, x): # a function that seperates the data based on the breaks for given x numberOfParameters = len(breaks) numberOfSegments = numberOfParameters - 1 self.numberOfParameters = numberOfParameters self.numberOfSegments = numberOfSegments # Seperate Data into Segments sepDataX = [[] for i in range(self.numberOfSegments)] for i in range(0, self.numberOfSegments): dataX = [] if i == 0: # the first index should always be inclusive aTest = x >= breaks[i] else: # the rest of the indexies should be exclusive aTest = x > breaks[i] dataX = np.extract(aTest, x) bTest = dataX <= breaks[i+1] dataX = np.extract(bTest, dataX) sepDataX[i] = np.array(dataX) return(sepDataX)
Example 2
def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : ndarray Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ if not isinstance(arr, np.ndarray): raise TypeError("argument 1 must be numpy.ndarray, " "not {name}".format(name=type(arr).__name__)) return _insert(arr, mask, vals)
Example 3
def seperateData(self, breaks): # a function that seperates the data based on the breaks numberOfParameters = len(breaks) numberOfSegments = numberOfParameters - 1 self.numberOfParameters = numberOfParameters self.numberOfSegments = numberOfSegments # Seperate Data into Segments sepDataX = [[] for i in range(self.numberOfSegments)] sepDataY = [[] for i in range(self.numberOfSegments)] for i in range(0, self.numberOfSegments): dataX = [] dataY = [] if i == 0: # the first index should always be inclusive aTest = self.xData >= breaks[i] else: # the rest of the indexies should be exclusive aTest = self.xData > breaks[i] dataX = np.extract(aTest, self.xData) dataY = np.extract(aTest, self.yData) bTest = dataX <= breaks[i+1] dataX = np.extract(bTest, dataX) dataY = np.extract(bTest, dataY) sepDataX[i] = np.array(dataX) sepDataY[i] = np.array(dataY) return(sepDataX, sepDataY)
Example 4
def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : ndarray Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ if not isinstance(arr, np.ndarray): raise TypeError("argument 1 must be numpy.ndarray, " "not {name}".format(name=type(arr).__name__)) return _insert(arr, mask, vals)
Example 5
def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : array_like Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ return _insert(arr, mask, vals)
Example 6
def extract_off_diag(mtx): """ extract off diagonal entries in mtx. The output vector is order in a column major manner. :param mtx: input matrix to extract the off diagonal entries :return: """ # we transpose the matrix because the function np.extract will first flatten the matrix # withe ordering convention 'C' instead of 'F'!! extract_cond = np.reshape((1 - np.eye(*mtx.shape)).T.astype(bool), (-1, 1), order='F') return np.reshape(np.extract(extract_cond, mtx.T), (-1, 1), order='F')
Example 7
def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : ndarray Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ if not isinstance(arr, np.ndarray): raise TypeError("argument 1 must be numpy.ndarray, " "not {name}".format(name=type(arr).__name__)) return _insert(arr, mask, vals)
Example 8
def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : ndarray Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N, it will be repeated, and if elements of `a` are to be masked, this sequence must be non-empty. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ if not isinstance(arr, np.ndarray): raise TypeError("argument 1 must be numpy.ndarray, " "not {name}".format(name=type(arr).__name__)) return _insert(arr, mask, vals)
Example 9
def computeSumWithThreshold( dataNumpyArray, threshold): # convert to a mesh grid grid = numpy.meshgrid(dataNumpyArray) # Logical comparison # 1) compute a boolean array of values less than the threshold compareThreshold = numpy.less (grid , threshold) # 2) compare and extract # TODO Not elegant, but works. found this at http://stackoverflow.com/a/26511354 boolThreshold = numpy.logical_and(compareThreshold , grid) # Create new array lowPlank = numpy.extract(boolThreshold, grid) return numpy.sum(lowPlank)
Example 10
def __call__(self, data): if data.domain != self.pca.pre_domain: data = data.from_table(self.pca.pre_domain, data) pca_space = self.pca.transform(data.X) if self.components is not None: #set unused components to zero remove = np.ones(pca_space.shape[1]) remove[self.components] = 0 remove = np.extract(remove, np.arange(pca_space.shape[1])) pca_space[:,remove] = 0 return self.pca.proj.inverse_transform(pca_space)
Example 11
def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : ndarray Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ if not isinstance(arr, np.ndarray): raise TypeError("argument 1 must be numpy.ndarray, " "not {name}".format(name=type(arr).__name__)) return _insert(arr, mask, vals)
Example 12
def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Note that `place` does the exact opposite of `extract`. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress, place Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
Example 13
def single_metrics(gt, pred, num_cl): t_px = np.zeros(num_cl) n_px = np.zeros(num_cl) n1_px = np.zeros(num_cl) px_class = np.unique(gt) error = np.subtract(gt, pred) for i in px_class: t_px[i] += (np.where(gt == i)[0]).shape[0] n_px[i] += (np.where((gt == i) & (error == 0))[0]).shape[0] n1_px[i] += (np.where(pred == i)[0]).shape[0] return t_px, n_px, n1_px # if __name__ == "__main__": # pic_start = int(sys.argv[1]) # pic_end = int(sys.argv[2]) # num_cl = 22 # t_px = np.zeros(num_cl) # n_px = np.zeros(num_cl) # n1_px = np.zeros(num_cl) # for idx in range(pic_start, pic_end+1): # tmp_t, tmp_n, tmp_n1 = save_result(str(idx), num_cl, True) # t_px += tmp_t # n_px += tmp_n # n1_px += tmp_n1 # t_sum = np.sum(t_px) # n_sum = np.sum(n_px) # px_acc = n_sum/t_sum # condition_1 = t_px != 0 # c_n1 = np.extract(condition_1, n_px) # c_t1 = np.extract(condition_1, t_px) # condition_2 = (np.subtract(np.add(t_px, n1_px), n_px)) != 0 # c_n2 = np.extract(condition_2, n_px) # c_d2 = np.extract(condition_2, (np.subtract(np.add(t_px, n1_px), n_px))) # mean_acc = np.sum(np.divide(c_n1, c_t1))/num_cl # mean_IU = np.sum(np.divide(c_n2, c_d2))/num_cl # fw_IU = np.sum(np.divide(np.extract(condition_2, np.multiply(t_px, n_px)), c_d2))/t_sum # print("========= metrics =========") # print("pixel accuracy: " + str(px_acc)) # print("mean accuracy: " + str(mean_acc)) # print("mean IU: " + str(mean_IU)) # print("frequency weighted IU: " + str(fw_IU)) # print("") # if __name__ == "__main__": # num_cl = 22 # pic_id = int(sys.argv[1]) # save_compare_results(pic_id, num_cl)
Example 14
def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Note that `place` does the exact opposite of `extract`. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress, place Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
Example 15
def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Note that `place` does the exact opposite of `extract`. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress, place Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
Example 16
def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Note that `place` does the exact opposite of `extract`. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress, place Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
Example 17
def compress(condition, a, axis=None, out=None): """ Return selected slices of an array along given axis. When working along a given axis, a slice along that axis is returned in `output` for each index where `condition` evaluates to True. When working on a 1-D array, `compress` is equivalent to `extract`. Parameters ---------- condition : 1-D array of bools Array that selects which entries to return. If len(condition) is less than the size of `a` along the given axis, then output is truncated to the length of the condition array. a : array_like Array from which to extract a part. axis : int, optional Axis along which to take slices. If None (default), work on the flattened array. out : ndarray, optional Output array. Its type is preserved and it must be of the right shape to hold the output. Returns ------- compressed_array : ndarray A copy of `a` without the slices along axis for which `condition` is false. See Also -------- take, choose, diag, diagonal, select ndarray.compress : Equivalent method in ndarray np.extract: Equivalent method when working on 1-D arrays numpy.doc.ufuncs : Section "Output arguments" Examples -------- >>> a = np.array([[1, 2], [3, 4], [5, 6]]) >>> a array([[1, 2], [3, 4], [5, 6]]) >>> np.compress([0, 1], a, axis=0) array([[3, 4]]) >>> np.compress([False, True, True], a, axis=0) array([[3, 4], [5, 6]]) >>> np.compress([False, True], a, axis=1) array([[2], [4], [6]]) Working on the flattened array does not return slices along an axis but selects elements. >>> np.compress([False, True], a) array([2]) """ return _wrapfunc(a, 'compress', condition, axis=axis, out=out)
Example 18
def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Note that `place` does the exact opposite of `extract`. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress, place Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
Example 19
def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Note that `place` does the exact opposite of `extract`. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress, place Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0])