Python numpy.divide() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def EStep(self):
    P = np.zeros((self.M, self.N))

    for i in range(0, self.M):
      diff     = self.X - np.tile(self.TY[i, :], (self.N, 1))
      diff    = np.multiply(diff, diff)
      P[i, :] = P[i, :] + np.sum(diff, axis=1)

    c = (2 * np.pi * self.sigma2) ** (self.D / 2)
    c = c * self.w / (1 - self.w)
    c = c * self.M / self.N

    P = np.exp(-P / (2 * self.sigma2))
    den = np.sum(P, axis=0)
    den = np.tile(den, (self.M, 1))
    den[den==0] = np.finfo(float).eps

    self.P   = np.divide(P, den)
    self.Pt1 = np.sum(self.P, axis=0)
    self.P1  = np.sum(self.P, axis=1)
    self.Np  = np.sum(self.P1) 

Example 2

def reproject_one_shape( self, shape, bbox, window, nfids):
            '''Re-project a shape to the original plan.

            '''

            shape_re = shape
            std_w, std_h = window
            x = bbox[0]
            y = bbox[1]
            w = bbox[2]
            h = bbox[3]
            center_x = x + np.divide(w, 2)
            center_y = y + np.divide(h, 2)
            
            X = shape[0:nfids]
            Y = shape[nfids:]    
            # reprojecting ...
            X = X * (std_w / 2.) + center_x
            Y = Y * (std_h / 2.) + center_y
            shape_re = np.concatenate((X,Y))

            return shape_re 

Example 3

def normalise_images(X):
    '''
    Helper for making the images zero mean and unit standard deviation i.e. `white`
    '''

    X_white = np.zeros(X.shape, dtype=np.float32)

    for ii in range(X.shape[0]):

        Xc = X[ii,:,:,:]
        mc = Xc.mean()
        sc = Xc.std()

        Xc_white = np.divide((Xc - mc), sc)

        X_white[ii,:,:,:] = Xc_white

    return X_white.astype(np.float32) 

Example 4

def IAM(self):
		"""
			Computation of Ideal Amplitude Mask. As appears in :
			H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux,
	   		"Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks,"
	   		in ICASSP 2015, Brisbane, April, 2015.
		Args:
			sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
			nResidual: (2D ndarray) Magnitude Spectrogram of the residual component
									(In this case the observed mixture should be placed)
		Returns:
			mask:      (2D ndarray) Array that contains time frequency gain values

		"""
		print('Ideal Amplitude Mask')
		self._mask = np.divide(self._sTarget, (self._eps + self._nResidual)) 

Example 5

def ExpM(self):
		"""
			Approximate a signal via element-wise exponentiation. As appears in :
			S.I. Mimilakis, K. Drossos, T. Virtanen, and G. Schuller,
			"Deep Neural Networks for Dynamic Range Compression in Mastering Applications,"
			in proc. of the 140th Audio Engineering Society Convention, Paris, 2016.
		Args:
			sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
			nResidual: (2D ndarray) Magnitude Spectrogram of the residual component
		Returns:
			mask:      (2D ndarray) Array that contains time frequency gain values

		"""
		print('Exponential mask')
		self._mask = np.divide(np.log(self._sTarget.clip(self._eps, np.inf)**self._alpha),\
							   np.log(self._nResidual.clip(self._eps, np.inf)**self._alpha)) 

Example 6

def IBM(self):
		"""
			Computation of Ideal Binary Mask.
		Args:
			sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
			nResidual: (2D ndarray) Magnitude Spectrogram of the residual component
		Returns:
			mask:      (2D ndarray) Array that contains time frequency gain values

		"""
		print('Ideal Binary Mask')
		theta = 0.5
		mask = np.divide(self._sTarget ** self._alpha, (self._eps + self._nResidual ** self._alpha))
		bg = np.where(mask >= theta)
		sm = np.where(mask < theta)
		mask[bg[0],bg[1]] = 1.
		mask[sm[0], sm[1]] = 0.
		self._mask = mask 

Example 7

def UBBM(self):
		"""
			Computation of Upper Bound Binary Mask. As appears in :
			- J.J. Burred, "From Sparse Models to Timbre Learning: New Methods for Musical Source Separation", PhD Thesis,
			TU Berlin, 2009.

		Args:
			sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
			nResidual: (2D ndarray) Magnitude Spectrogram of the residual component (Should not contain target source!)
		Returns:
			mask:      (2D ndarray) Array that contains time frequency gain values
		"""
		print('Upper Bound Binary Mask')
		mask = 20. * np.log(self._eps + np.divide((self._eps + (self._sTarget ** self._alpha)),
									  ((self._eps + (self._nResidual ** self._alpha)))))
		bg = np.where(mask >= 0)
		sm = np.where(mask < 0)
		mask[bg[0],bg[1]] = 1.
		mask[sm[0], sm[1]] = 0.
		self._mask = mask 

Example 8

def alphaHarmonizableProcess(self):
		"""
			Computation of Wiener like mask using fractional power spectrograms. As appears in :
			A. Liutkus, R. Badeau, "Generalized Wiener filtering with fractional power spectrograms",
    		40th International Conference on Acoustics, Speech and Signal Processing (ICASSP),
    		Apr 2015, Brisbane, Australia.
		Args:
			sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
		    nResidual: (2D ndarray) Magnitude Spectrogram of the residual component or a list 
									of 2D ndarrays which will be added together
		Returns:
			mask:      (2D ndarray) Array that contains time frequency gain values

		"""
		print('Harmonizable Process with alpha:', str(self._alpha))
		localsTarget = self._sTarget ** self._alpha
		numElements = len(self._nResidual)
		if numElements > 1:
			localnResidual = self._nResidual[0] ** self._alpha + localsTarget
			for indx in range(1, numElements):
				localnResidual += self._nResidual[indx] ** self._alpha
		else :
			localnResidual = self._nResidual[0] ** self._alpha + localsTarget
			 
		self._mask = np.divide((localsTarget + self._eps), (self._eps + localnResidual)) 

Example 9

def phaseSensitive(self):
		"""
			Computation of Phase Sensitive Mask. As appears in :
			H Erdogan, John R. Hershey, Shinji Watanabe, and Jonathan Le Roux,
	   		"Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks,"
	   		in ICASSP 2015, Brisbane, April, 2015.

		Args:
			mTarget:   (2D ndarray) Magnitude Spectrogram of the target component
			pTarget:   (2D ndarray) Phase Spectrogram of the output component
			mY:        (2D ndarray) Magnitude Spectrogram of the residual component
			pY:        (2D ndarray) Phase Spectrogram of the residual component
		Returns:
			mask:      (2D ndarray) Array that contains time frequency gain values

		"""
		print('Phase Sensitive Masking.')
		# Compute Phase Difference
		Theta = (self._pTarget - self._pY)
		self._mask = 2./ (1. + np.exp(-np.multiply(np.divide(self._sTarget, self._eps + self._nResidual), np.cos(Theta)))) - 1. 

Example 10

def load_augment(fname, w, h, aug_params=no_augmentation_params,
                 transform=None, sigma=0.0, color_vec=None):
    """Load augmented image with output shape (w, h).

    Default arguments return non augmented image of shape (w, h).
    To apply a fixed transform (color augmentation) specify transform
    (color_vec).
    To generate a random augmentation specify aug_params and sigma.
    """
    img = load_image(fname)
    img = perturb(img, augmentation_params=aug_params, target_shape=(w, h))
    #if transform is None:
    #    img = perturb(img, augmentation_params=aug_params, target_shape=(w, h))
    #else:
    #    img = perturb_fixed(img, tform_augment=transform, target_shape=(w, h))

    #randString = str(np.random.normal(0,1,1))
    #im = Image.fromarray(img.transpose(1,2,0).astype('uint8'))
    #figName = fname.split("/")[-1]
    #im.save("imgs/"+figName+randString+".jpg")

    np.subtract(img, MEAN[:, np.newaxis, np.newaxis], out=img)
    #np.divide(img, STD[:, np.newaxis, np.newaxis], out=img)
    #img = augment_color(img, sigma=sigma, color_vec=color_vec)
    return img 

Example 11

def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore') 

Example 12

def __ifloordiv__(self, other):
        """
        Floor divide self by other in-place.

        """
        other_data = getdata(other)
        dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
        other_mask = getmask(other)
        new_mask = mask_or(other_mask, dom_mask)
        # The following 3 lines control the domain filling
        if dom_mask.any():
            (_, fval) = ufunc_fills[np.floor_divide]
            other_data = np.where(dom_mask, fval, other_data)
        self._mask |= new_mask
        self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1),
                                          other_data))
        return self 

Example 13

def __itruediv__(self, other):
        """
        True divide self by other in-place.

        """
        other_data = getdata(other)
        dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
        other_mask = getmask(other)
        new_mask = mask_or(other_mask, dom_mask)
        # The following 3 lines control the domain filling
        if dom_mask.any():
            (_, fval) = ufunc_fills[np.true_divide]
            other_data = np.where(dom_mask, fval, other_data)
        self._mask |= new_mask
        self._data.__itruediv__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        return self 

Example 14

def __ipow__(self, other):
        """
        Raise self to the power other, in place.

        """
        other_data = getdata(other)
        other_mask = getmask(other)
        with np.errstate(divide='ignore', invalid='ignore'):
            self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        invalid = np.logical_not(np.isfinite(self._data))
        if invalid.any():
            if self._mask is not nomask:
                self._mask |= invalid
            else:
                self._mask = invalid
            np.copyto(self._data, self.fill_value, where=invalid)
        new_mask = mask_or(other_mask, invalid)
        self._mask = mask_or(self._mask, new_mask)
        return self 

Example 15

def update_kl_loss(p, lambdas, T, Cs):
    """
    Updates C according to the KL Loss kernel with the S Ts couplings calculated at each iteration


    Parameters
    ----------
    p  : ndarray, shape (N,)
         weights in the targeted barycenter
    lambdas : list of the S spaces' weights
    T : list of S np.ndarray(ns,N)
        the S Ts couplings calculated at each iteration
    Cs : list of S ndarray, shape(ns,ns)
         Metric cost matrices

    Returns
    ----------
    C : ndarray, shape (ns,ns)
        updated C matrix
    """
    tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s])
                  for s in range(len(T))])
    ppt = np.outer(p, p)

    return np.exp(np.divide(tmpsum, ppt)) 

Example 16

def IBM(self):
		"""
			Computation of Ideal Binary Mask.
		Args:
			sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
			nResidual: (2D ndarray) Magnitude Spectrogram of the residual component
		Returns:
			mask:      (2D ndarray) Array that contains time frequency gain values

		"""
		print('Ideal Binary Mask')
		theta = 0.5
		mask = np.divide(self._sTarget ** self._alpha, (self._eps + self._nResidual ** self._alpha))
		bg = np.where(mask >= theta)
		sm = np.where(mask < theta)
		mask[bg[0],bg[1]] = 1.
		mask[sm[0], sm[1]] = 0.
		self._mask = mask 

Example 17

def UBBM(self):
		"""
			Computation of Upper Bound Binary Mask. As appears in :
			- J.J. Burred, "From Sparse Models to Timbre Learning: New Methods for Musical Source Separation", PhD Thesis,
			TU Berlin, 2009.

		Args:
			sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
			nResidual: (2D ndarray) Magnitude Spectrogram of the residual component (Should not contain target source!)
		Returns:
			mask:      (2D ndarray) Array that contains time frequency gain values
		"""
		print('Upper Bound Binary Mask')
		mask = 20. * np.log(self._eps + np.divide((self._eps + (self._sTarget ** self._alpha)),
									  ((self._eps + (self._nResidual ** self._alpha)))))
		bg = np.where(mask >= 0)
		sm = np.where(mask < 0)
		mask[bg[0],bg[1]] = 1.
		mask[sm[0], sm[1]] = 0.
		self._mask = mask 

Example 18

def Wiener(self):
		"""
			Computation of Wiener-like Mask. As appears in :
			H Erdogan, John R. Hershey, Shinji Watanabe, and Jonathan Le Roux,
	   		"Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks,"
	   		in ICASSP 2015, Brisbane, April, 2015.
		Args:
				sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
				nResidual: (2D ndarray) Magnitude Spectrogram of the residual component
		Returns:
				mask:      (2D ndarray) Array that contains time frequency gain values
		"""
		print('Wiener-like Mask')
		localsTarget = self._sTarget ** 2.
		numElements = len(self._nResidual)
		if numElements > 1:
			localnResidual = self._nResidual[0] ** 2. + localsTarget
			for indx in range(1, numElements):
				localnResidual += self._nResidual[indx] ** 2.
		else :
			localnResidual = self._nResidual[0] ** 2. + localsTarget

		self._mask = np.divide((localsTarget + self._eps), (self._eps + localnResidual)) 

Example 19

def alphaHarmonizableProcess(self):
		"""
			Computation of alpha harmonizable Wiener like mask, as appears in :
			A. Liutkus, R. Badeau, "Generalized Wiener filtering with fractional power spectrograms",
    		40th International Conference on Acoustics, Speech and Signal Processing (ICASSP),
    		Apr 2015, Brisbane, Australia.
		Args:
			sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
		    nResidual: (2D ndarray) Magnitude Spectrogram of the residual component or a list 
									of 2D ndarrays which will be summed
		Returns:
			mask:      (2D ndarray) Array that contains time frequency gain values

		"""
		print('Harmonizable Process with alpha:', str(self._alpha))
		localsTarget = self._sTarget ** self._alpha
		numElements = len(self._nResidual)
		if numElements > 1:
			localnResidual = self._nResidual[0] ** self._alpha + localsTarget
			for indx in range(1, numElements):
				localnResidual += self._nResidual[indx] ** self._alpha
		else :
			localnResidual = self._nResidual[0] ** self._alpha + localsTarget
			 
		self._mask = np.divide((localsTarget + self._eps), (self._eps + localnResidual)) 

Example 20

def contributions(in_length, out_length, scale, kernel, k_width):
    if scale < 1:
        h = lambda x: scale * kernel(scale * x)
        kernel_width = 1.0 * k_width / scale
    else:
        h = kernel
        kernel_width = k_width
    x = np.arange(1, out_length+1).astype(np.float64)
    u = x / scale + 0.5 * (1 - 1 / scale)
    left = np.floor(u - kernel_width / 2)
    P = int(ceil(kernel_width)) + 2
    ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0
    indices = ind.astype(np.int32)
    weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0
    weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1))
    aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32)
    indices = aux[np.mod(indices, aux.size)]
    ind2store = np.nonzero(np.any(weights, axis=0))
    weights = weights[:, ind2store]
    indices = indices[:, ind2store]
    return weights, indices 

Example 21

def generate_signals(self):
        for i in range(self.Trials):
            x = self.True_position[i, 0]
            y = self.True_position[i, 1]
            z = self.True_position[i, 2]

            mic_data = [numpy.vstack((numpy.zeros((int(round(self.Padding[i, j])), 1)), self.wave)) for j in range(self.N)]
            lenvec = numpy.array([len(mic) for mic in mic_data])
            m = max(lenvec)
            c = numpy.array([m - mic_len for mic_len in lenvec])
            mic_data = [numpy.vstack((current_mic, numpy.zeros((c[idx], 1)))) for idx, current_mic in enumerate(mic_data)]
            mic_data = [numpy.divide(current_mic, self.Distances[i, idx]) for idx, current_mic in enumerate(mic_data)]
            multitrack = numpy.array(mic_data)

            print 'prepared all data.'

            x, y, z = self.locate(self.Sen_position, multitrack)

            self.Est_position[i, 0] = x
            self.Est_position[i, 1] = y
            self.Est_position[i, 2] = z 

Example 22

def _kl_hr(pha, amp, nbins):
    nPha, npts, nAmp = *pha.shape, amp.shape[0]
    step = 2*np.pi/nbins
    vecbin = binarize(-np.pi, np.pi+step, step, step)
    if len(vecbin) > nbins:
        vecbin = vecbin[0:-1]

    abin = np.zeros((nAmp, nPha, nbins))
    for k, i in enumerate(vecbin):
        # Find where phase take vecbin values :
        pL, pC = np.where((pha >= i[0]) & (pha < i[1]))

        # Matrix to do amp x binMat :
        binMat = np.zeros((npts, nPha))
        binMat[pC, pL] = 1
        meanMat = np.matlib.repmat(binMat.sum(axis=0), nAmp, 1)
        meanMat[meanMat == 0] = 1

        # Multiply matrix :
        abin[:, :, k] = np.divide(np.dot(amp, binMat), meanMat)
    abinsum = np.array([abin.sum(axis=2) for k in range(nbins)])

    return abin, abinsum 

Example 23

def scoring(predictions_list,answer_list):
	"""
	??????
	?????????????????????????????????????????????????????????????????
		(1)	???????????????????????????????????????????????????????????????(????????????????????)
		(2)	?????????(??????)?????????????????????????????????????????????
		(3)	?????????(??????)????????????????????????????????????????????
		(4)	????????(?????)?????????????????????????????????????????????????
		(5)	?[???????(2)	]-[????????(3)]-[??????(4)]??????????
		(6)	????????????????????????????????????
	:param predictions_list:
	:param answer_list:
	:return:
	"""
	pred,answer,missing=generate_scoring_array(predictions_list,answer_list)
	# print(pred)
	# print(answer)
	margin1=expect_margin(pred,answer) #???????????
	margin2= expect_margin(answer, answer) #???????????
	price_hit = price_trend_hit(pred, answer)  # ???????????
	
	margin_rate=np.divide(margin1,margin2)
	score=np.sum(margin_rate)
	return score ,margin_rate, price_hit,missing 

Example 24

def train(self):
        eps = 1e-10
        for i in range(self.epo):
            if i % 1 == 0:
                self.show_error()

            A = np.asarray(self.A.copy())
            Z = np.asarray(self.Z.copy())
            start = time.time()
            Z1 = np.multiply(Z, np.asarray(self.A.transpose() * self.Y))
            Z = np.divide(Z1, eps + np.asarray(self.A.transpose() * self.A * self.Z)) # + eps to avoid divided by 0
            self.Z = np.asmatrix(Z)
            A1 = np.multiply(A, np.asarray( self.Y * self.Z.transpose()))
            A = np.divide(A1, eps + np.asarray( self.A * self.Z * self.Z.transpose()))
            end = time.time()
            self.A = np.asmatrix(A)
            self.time = self.time + end - start 

Example 25

def make_xy_data(csv, drop_nan_columns=None):
    data = pd.read_csv(csv, index_col=0)
    n = len(data)

    if drop_nan_columns:
        data = data.dropna(subset=drop_nan_columns)

    print "[Warning] dropped %s samples because of NaN values" % (n-len(data))

    y = np.divide(data[['prix']].astype(float).values.T,
                  data[['surface_m2']].astype(float).values.T
                  )[0]

    x = data.drop(['prix'], axis=1)

    return x, y 

Example 26

def get_centroid_idf(text, emb, idf, stopwords, D):
    # Computing Terms' Frequency
    tf = defaultdict(int)
    tokens = bioclean(text)
    for word in tokens:
        if word in emb and word not in stopwords:
            tf[word] += 1

    # Computing the centroid
    centroid = np.zeros((1, D))
    div = 0

    for word in tf:
        if word in idf:
            p = tf[word] * idf[word]
            centroid = np.add(centroid, emb[word]*p)
            div += p
    if div != 0:
        centroid = np.divide(centroid, div)
    return centroid 

Example 27

def load_augment(fname, w, h, aug_params=no_augmentation_params,
                 transform=None, sigma=0.0, color_vec=None):
    """Load augmented image with output shape (w, h).

    Default arguments return non augmented image of shape (w, h).
    To apply a fixed transform (color augmentation) specify transform
    (color_vec). 
    To generate a random augmentation specify aug_params and sigma.
    """
    img = load_image(fname)
    if transform is None:
        img = perturb(img, augmentation_params=aug_params, target_shape=(w, h))
    else:
        img = perturb_fixed(img, tform_augment=transform, target_shape=(w, h))

    np.subtract(img, MEAN[:, np.newaxis, np.newaxis], out=img)
    np.divide(img, STD[:, np.newaxis, np.newaxis], out=img)
    img = augment_color(img, sigma=sigma, color_vec=color_vec)
    return img 

Example 28

def __init__(self, bounds, orig_resolution, tile_width, tile_height, tile_format_url,
                 zoom_level=0, missing_z=None, image_leaf_shape=None):
        self.orig_bounds = bounds
        self.orig_resolution = orig_resolution
        self.tile_width = tile_width
        self.tile_height = tile_height
        self.tile_format_url = tile_format_url

        self.zoom_level = int(zoom_level)
        if missing_z is None:
            missing_z = []
        self.missing_z = frozenset(missing_z)
        if image_leaf_shape is None:
            image_leaf_shape = [10, tile_height, tile_width]

        scale = np.exp2(np.array([0, self.zoom_level, self.zoom_level])).astype(np.int64)

        data_shape = (np.zeros(3), np.divide(bounds, scale).astype(np.int64))
        self.image_data = OctreeVolume(image_leaf_shape,
                                       data_shape,
                                       'float32',
                                       populator=self.image_populator)

        self.label_data = None 

Example 29

def apply_cmvn(utt, mean, variance, reverse=False):
    """Apply mean and variance normalisation based on previously computed statistics.

    Args:
        utt: The utterance feature numpy matrix.
        stats: A numpy array containing the mean and variance statistics.
            The first row contains the sum of all the fautures and as a last
            element the total numbe of features. The second row contains the
            squared sum of the features and a zero at the end

    Returns:
        A numpy array containing the mean and variance normalized features
    """
    if not reverse:
        #return mean and variance normalised utterance
        return np.divide(np.subtract(utt, mean), np.sqrt(variance))
    else:
        #reversed normalization
        return np.add(np.multiply(utt, np.sqrt(variance)), mean) 

Example 30

def updateQProbs(lastStateID, lastAction):
	# print 'np.sum(QCounts[lastStateID,]) = ', np.sum(QCounts[lastStateID,])
	# print 'np.sum(QCounts[lastStateID,]) = ', np.sum(QCounts[lastStateID,])
	# print 'np.sum(QValues[lastStateID,]) = ', np.sum(QValues[lastStateID,])
	if np.sum(QCounts[lastStateID,]) == 0 or np.sum(QValues[lastStateID,]) == 0:
		tau = 1
	else:
		# print '(-(np.mean(QValues[lastStateID,]))) = ', (-(np.mean(QValues[lastStateID,])))
		# print '(np.mean(QCounts[lastStateID,])) = ', (np.mean(QCounts[lastStateID,]))
		tau = (-(np.mean(QValues[lastStateID,])))/(np.mean(QCounts[lastStateID,]))
	# print 'tau = ', tau
	numerator = np.exp(QValues[lastStateID, ]/tau)
	tempSum = np.sum(numerator)
	denominator = np.array([tempSum, tempSum, tempSum, tempSum, tempSum, tempSum, tempSum, tempSum])
	QProbs[lastStateID, ] = np.divide(numerator, denominator)

# initial dataframes which will be able to store performance data over different days 

Example 31

def multistate_distribution(data, parameters, limit, 
                            normalize_likelihood_level_cell_counts = True):

    data_grandpa, data_parent, data_children = data
    sigma, b, a_grandpa, a_parent, a_children = parameters
    
    normalization_factor = normalize(sigma, a_grandpa, b, limit)
    grandpa_dist = [steady_state_distribution(x, sigma, a_grandpa, b, normalization_factor) for x in data_grandpa]
    
    normalization_factor = normalize(sigma, a_parent, b, limit)
    parent_dist = [steady_state_distribution(x, sigma, a_parent, b, normalization_factor) for x in data_parent]
    
    normalization_factor = normalize(sigma, a_children, b, limit)
    children_dist = [steady_state_distribution(x, sigma, a_children, b, normalization_factor) for x in data_children]
    
    grandpa_dist = np.array(grandpa_dist, dtype = float)
    parent_dist = np.array(parent_dist, dtype = float)
    children_dist = np.array(children_dist, dtype = float)
    
    if normalize_likelihood_level_cell_counts:
        grandpa_dist = np.divide(grandpa_dist, float(data_grandpa.size))
        parent_dist = np.divide(parent_dist, float(data_parent.size))
        children_dist = np.divide(children_dist, float(data_children.size))
        
    return grandpa_dist, parent_dist, children_dist 

Example 32

def process_study(study_id, out_dir):
    isometric_volume = np.load('../data_proc/stage1/isotropic_volumes_1mm/{}.npy'.format(study_id))
    mean = np.mean(isometric_volume).astype(np.float32)
    std = np.std(isometric_volume).astype(np.float32)
    volume_resized = scipy.ndimage.interpolation.zoom(isometric_volume,
                                                      np.divide(64, isometric_volume.shape),
                                                      mode='nearest')
    volume_resized = (volume_resized.astype(np.float32) - mean) / (std + 1e-7)
    for i in range(7):
        z_shift = random.randint(0, 5)
        z0 = (volume_resized.shape[0]//2) - z_shift
        z1 = volume_resized.shape[0] - z_shift
        y_shift = random.randint(0, 5)
        y0 = y_shift
        y1 = (volume_resized.shape[1]//2) + y_shift
        volume_resized_sample = volume_resized[z0:z1, y0:y1, :]
        volume_resized_sample = np.expand_dims(volume_resized_sample, axis=3)
        out_filepath = os.path.join(out_dir, '{}.npy'.format(uuid4()))
        np.save(out_filepath, volume_resized_sample)
    return 

Example 33

def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore') 

Example 34

def __ifloordiv__(self, other):
        """
        Floor divide self by other in-place.

        """
        other_data = getdata(other)
        dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
        other_mask = getmask(other)
        new_mask = mask_or(other_mask, dom_mask)
        # The following 3 lines control the domain filling
        if dom_mask.any():
            (_, fval) = ufunc_fills[np.floor_divide]
            other_data = np.where(dom_mask, fval, other_data)
        self._mask |= new_mask
        self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1),
                                          other_data))
        return self 

Example 35

def __itruediv__(self, other):
        """
        True divide self by other in-place.

        """
        other_data = getdata(other)
        dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
        other_mask = getmask(other)
        new_mask = mask_or(other_mask, dom_mask)
        # The following 3 lines control the domain filling
        if dom_mask.any():
            (_, fval) = ufunc_fills[np.true_divide]
            other_data = np.where(dom_mask, fval, other_data)
        self._mask |= new_mask
        self._data.__itruediv__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        return self 

Example 36

def __ipow__(self, other):
        """
        Raise self to the power other, in place.

        """
        other_data = getdata(other)
        other_mask = getmask(other)
        with np.errstate(divide='ignore', invalid='ignore'):
            self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        invalid = np.logical_not(np.isfinite(self._data))
        if invalid.any():
            if self._mask is not nomask:
                self._mask |= invalid
            else:
                self._mask = invalid
            np.copyto(self._data, self.fill_value, where=invalid)
        new_mask = mask_or(other_mask, invalid)
        self._mask = mask_or(self._mask, new_mask)
        return self 

Example 37

def get_ensemble_weights(ensemble_dirs):
    '''
    return ensembling weightes by reading ./output/<ensemble_dir>/models_ensembled.txt
    '''
    total_models = 0
    weights = np.zeros(len(ensemble_dirs))

    for i, ensemble_dir in enumerate(ensemble_dirs):
        ensembled_model_names, _ = get_models_ensembled(ensemble_dir)
        num_models_used = len(ensembled_model_names)

        total_models += num_models_used
        weights[i] = num_models_used

    weights = np.divide(weights, total_models)
    return weights 

Example 38

def htmt(self):

        htmt_ = pd.DataFrame(pd.DataFrame.corr(self.data_),
                             index=self.manifests, columns=self.manifests)

        mean = []
        allBlocks = []
        for i in range(self.lenlatent):
            block_ = self.Variables['measurement'][
                self.Variables['latent'] == self.latent[i]]
            allBlocks.append(list(block_.values))
            block = htmt_.ix[block_, block_]
            mean_ = (block - np.diag(np.diag(block))).values
            mean_[mean_ == 0] = np.nan
            mean.append(np.nanmean(mean_))

        comb = [[k, j] for k in range(self.lenlatent)
                for j in range(self.lenlatent)]

        comb_ = [(np.sqrt(mean[comb[i][1]] * mean[comb[i][0]]))
                 for i in range(self.lenlatent ** 2)]

        comb__ = []
        for i in range(self.lenlatent ** 2):
            block = (htmt_.ix[allBlocks[comb[i][1]],
                              allBlocks[comb[i][0]]]).values
#            block[block == 1] = np.nan
            comb__.append(np.nanmean(block))

        htmt__ = np.divide(comb__, comb_)
        where_are_NaNs = np.isnan(htmt__)
        htmt__[where_are_NaNs] = 0

        htmt = pd.DataFrame(np.tril(htmt__.reshape(
            (self.lenlatent, self.lenlatent)), k=-1), index=self.latent, columns=self.latent)

        return htmt 

Example 39

def updateTransform(self):
    muX = np.divide(np.sum(np.dot(self.P, self.X), axis=0), self.Np)
    muY = np.divide(np.sum(np.dot(np.transpose(self.P), self.Y), axis=0), self.Np)

    self.XX = self.X - np.tile(muX, (self.N, 1))
    YY      = self.Y - np.tile(muY, (self.M, 1))

    self.A = np.dot(np.transpose(self.XX), np.transpose(self.P))
    self.A = np.dot(self.A, YY)

    U, _, V = np.linalg.svd(self.A, full_matrices=True)
    C = np.ones((self.D, ))
    C[self.D-1] = np.linalg.det(np.dot(U, V))

    self.R = np.dot(np.dot(U, np.diag(C)), V)

    self.YPY = np.dot(np.transpose(self.P1), np.sum(np.multiply(YY, YY), axis=1))

    self.s = np.trace(np.dot(np.transpose(self.A), self.R)) / self.YPY

    self.t = np.transpose(muX) - self.s * np.dot(self.R, np.transpose(muY)) 

Example 40

def EStep(self):
    P = np.zeros((self.M, self.N))

    for i in range(0, self.M):
      diff     = self.X - np.tile(self.TY[i, :], (self.N, 1))
      diff    = np.multiply(diff, diff)
      P[i, :] = P[i, :] + np.sum(diff, axis=1)

    c = (2 * np.pi * self.sigma2) ** (self.D / 2)
    c = c * self.w / (1 - self.w)
    c = c * self.M / self.N

    P = np.exp(-P / (2 * self.sigma2))
    den = np.sum(P, axis=0)
    den = np.tile(den, (self.M, 1))
    den[den==0] = np.finfo(float).eps

    self.P   = np.divide(P, den)
    self.Pt1 = np.sum(self.P, axis=0)
    self.P1  = np.sum(self.P, axis=1)
    self.Np  = np.sum(self.P1) 

Example 41

def updateTransform(self):
    muX = np.divide(np.sum(np.dot(self.P, self.X), axis=0), self.Np)
    muY = np.divide(np.sum(np.dot(np.transpose(self.P), self.Y), axis=0), self.Np)

    self.XX = self.X - np.tile(muX, (self.N, 1))
    YY      = self.Y - np.tile(muY, (self.M, 1))

    self.A = np.dot(np.transpose(self.XX), np.transpose(self.P))
    self.A = np.dot(self.A, YY)

    self.YPY = np.dot(np.transpose(YY), np.diag(self.P1))
    self.YPY = np.dot(self.YPY, YY)

    Bt = np.linalg.solve(np.transpose(self.YPY), np.transpose(self.A))
    self.B = np.transpose(Bt)
    self.t = np.transpose(muX) - np.dot(self.B, np.transpose(muY)) 

Example 42

def eStep(self):
    P = np.zeros((self.M, self.N))

    for i in range(0, self.M):
      diff     = self.X - np.tile(self.TY[i, :], (self.N, 1))
      diff    = np.multiply(diff, diff)
      P[i, :] = P[i, :] + np.sum(diff, axis=1)

    c = (2 * np.pi * self.sigma2) ** (self.D / 2)
    c = c * self.w / (1 - self.w)
    c = c * self.M / self.N

    P = np.exp(-P / (2 * self.sigma2))
    den = np.sum(P, axis=0)
    den = np.tile(den, (self.M, 1))
    den[den==0] = np.finfo(float).eps

    self.P   = np.divide(P, den)
    self.Pt1 = np.sum(self.P, axis=0)
    self.P1  = np.sum(self.P, axis=1)
    self.Np  = np.sum(self.P1) 

Example 43

def sentence2vec(sentence, model=WORD2VEC, stopwords=STOPWORDS, metadata=None, section=None, wordvecs_only=True):
    """
    Changes a sentence into a vector by averaging the word vectors of every non-stopword word in the sentence.
    :param sentence: the sentence to turn into a vector, as a list of words
    :param model: the word2vec model to use to convert words to vectors
    :param stopwords: stopwords to not include in the averaging of each sentence.
    :param metadata: dictionaries of metadata for the paper.
    :param section: the section of the paper the sentence occurs in.
    :param wordvecs_only: will turn a sentence into a vector using only the the word vectors from the model, no extra
                          features.
    :return: the sentence in vector representation
    """
    # The shape of the model, used to get the number of features and its vocab
    model_shape = model.syn0.shape
    vocab = set(model.index2word)

    # The array that will be used to calculate the average word vector
    average = np.zeros((model_shape[1]), dtype="float32")
    total_word_count = 0

    for word in sentence:

        if word in stopwords:
            continue

        if word in vocab:
            word_rep = model[word]
            average += word_rep
            total_word_count += 1

    if total_word_count == 0:
        total_word_count = 1

    average = np.divide(average, total_word_count)

    sentence_vec = average

    return sentence_vec 

Example 44

def evaluation(self, theta, X_test, y_test):
        theta = theta[:, :-1]
        M, n_test = theta.shape[0], len(y_test)

        prob = np.zeros([n_test, M])
        for t in range(M):
            coff = np.multiply(y_test, np.sum(-1 * np.multiply(nm.repmat(theta[t, :], n_test, 1), X_test), axis=1))
            prob[:, t] = np.divide(np.ones(n_test), (1 + np.exp(coff)))
        
        prob = np.mean(prob, axis=1)
        acc = np.mean(prob > 0.5)
        llh = np.mean(np.log(prob))
        return [acc, llh] 

Example 45

def update(self, x0, lnprob, n_iter = 1000, stepsize = 1e-3, bandwidth = -1, alpha = 0.9, debug = False):
        # Check input
        if x0 is None or lnprob is None:
            raise ValueError('x0 or lnprob cannot be None!')
        
        theta = np.copy(x0) 
        
        # adagrad with momentum
        fudge_factor = 1e-6
        historical_grad = 0
        for iter in range(n_iter):
            if debug and (iter+1) % 1000 == 0:
                print 'iter ' + str(iter+1) 
            
            lnpgrad = lnprob(theta)
            # calculating the kernel matrix
            kxy, dxkxy = self.svgd_kernel(theta, h = -1)  
            grad_theta = (np.matmul(kxy, lnpgrad) + dxkxy) / x0.shape[0]  
            
            # adagrad 
            if iter == 0:
                historical_grad = historical_grad + grad_theta ** 2
            else:
                historical_grad = alpha * historical_grad + (1 - alpha) * (grad_theta ** 2)
            adj_grad = np.divide(grad_theta, fudge_factor+np.sqrt(historical_grad))
            theta = theta + stepsize * adj_grad 
            
        return theta 

Example 46

def __entropy(self, pdf):
        """Calculate shannon entropy of posterior distribution.
        Arguments
        ---------
            pdf :   ndarray (float64)
                    posterior distribution of psychometric curve parameters for each stimuli


        Returns
        -------
        1D numpy array (float64) : Shannon entropy of posterior for each stimuli
        """
        # Marginalize out all nuisance parameters, i.e. all except alpha and sigma
        postDims = np.ndim(pdf)
        if self.marginalize == True:
            while postDims > 3:  # marginalize out second-to-last dimension, last dim is x
                pdf = np.sum(pdf, axis=-2)
                postDims -= 1
        # find expected entropy, suppress divide-by-zero and invalid value warnings
        # as this is handled by the NaN redefinition to 0
        with np.errstate(divide='ignore', invalid='ignore'):
            entropy = np.multiply(pdf, np.log(pdf))
        entropy[np.isnan(entropy)] = 0  # define 0*log(0) to equal 0
        dimSum = tuple(range(postDims - 1))  # dimensions to sum over. also a Chinese dish
        entropy = -(np.sum(entropy, axis=dimSum))
        return entropy 

Example 47

def SLshearrecadjoint2D(X, shearletSystem):
    """
    Adjoint of (pseudo-)inverse of 2D data.

    Note that this is also the (pseudo-)inverse of the adjoint.

    Usage:

        coeffs = SLshearrecadjoint2D(X, shearletSystem)

    Input:

        X             : 2D data.
        shearletSystem: Structure containing a shearlet system. This
                        should be the same system as the one
                        previously used for decomposition.

    Output:

        coeffs:          X x Y x N array of shearlet coefficients.
    """
    # skipping useGPU stuff...

    # STUFF
    Xfreq = np.divide(fftlib.fftshift(fftlib.fft2(fftlib.ifftshift(X))), shearletSystem["dualFrameWeights"])
    coeffs = np.zeros(shearletSystem["shearlets"].shape, dtype=complex)

    for j in range(shearletSystem["nShearlets"]):
        coeffs[:,:,j] = fftlib.fftshift(fftlib.ifft2(fftlib.ifftshift(Xfreq*np.conj(shearletSystem["shearlets"][:,:,j]))))

    return np.real(coeffs).astype(X.dtype)

#
############################################################################## 

Example 48

def __call__(self, sample):
        # keep tract of absolute value of
        self.diff = np.add(self.diff,
                           np.absolute(np.asarray(sample.channel_data)))
        self.sample_count = self.sample_count + 1

        elapsed_time = timeit.default_timer() - self.last_report
        if elapsed_time > self.polling_interval:
            channel_noise_power = np.divide(self.diff, self.sample_count)

            print (channel_noise_power)
            self.diff = np.zeros(self.eeg_channels)
            self.last_report = timeit.default_timer()

    # # Instanciate "monitor" thread 

Example 49

def normalize(self):
        """
        Normalize by maximum amplitude.
        """
        return Wave(np.divide(self, np.max(np.abs(self), 0)), self.sample_rate) 

Example 50

def normalize_points(self, x):
        return np.divide(x - np.amin(self.X, 0) ,
            np.amax(self.X, 0) - np.amin(self.X, 0), np.empty_like(x)) 
点赞