The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def make2d(array, cols=None, dtype=None): ''' Make a 2D array from an array of arrays. The `cols' and `dtype' arguments can be omitted if the array is not empty. ''' if (cols is None or dtype is None) and not len(array): raise RuntimeError("cols and dtype must be specified for empty " "array") if cols is None: cols = len(array[0]) if dtype is None: dtype = array[0].dtype return _np.fromiter(array, [('_', dtype, (cols,))], count=len(array))['_']
Example 2
def _load_saved_predictions(self, existing_predictions, matrix_store): index = matrix_store.matrix.index score_lookup = {} for prediction in existing_predictions: score_lookup[( prediction.entity_id, prediction.as_of_date.date().isoformat() )] = prediction.score if 'as_of_date' in index.names: score_iterator = ( score_lookup[( entity_id, datetime.strptime(dt, self.expected_matrix_ts_format).date().isoformat() )] for (entity_id, dt) in index ) else: as_of_date = matrix_store.metadata['end_time'].date().isoformat() score_iterator = (score_lookup[(row, as_of_date)] for row in index) return numpy.fromiter(score_iterator, float)
Example 3
def txt2vec(self, text, vec_type=list): """Converts a string to a vector (list of ints). First runs a sentence tokenizer, then a word tokenizer. ``vec_type`` is the type of the returned vector if the input is a string. """ if vec_type == np.ndarray: res = np.fromiter( (self[token] for token in self.tokenize(str(text))), np.int ) elif vec_type == list or vec_type == tuple or vec_type == set: res = vec_type((self[token] for token in self.tokenize(str(text)))) else: raise RuntimeError('Type {} not supported by dict'.format(vec_type)) assert type(res) == vec_type return res
Example 4
def weighted_avg_and_std(values, weights=None): ''' Return the weighted average and standard deviation. `values` - np.ndarray of values to average. `weights` - Optional np.ndarray of weights. Otherwise all values are assumed equally weighted. Note the helpful np.fromiter() function, helpful building arrays. ''' if not isinstance(values, np.ndarray): raise TypeError("Values must be an np.array") if len(values) == 0: raise ValueError("Can't calculate with no values") if weights is not None: if not isinstance(weights, np.ndarray): raise TypeError("Weights must be None or an np.array") if len(values) != len(weights): raise ValueError("Length of values and weights differ") average = np.average(values, weights=weights) variance = np.average((values-average)**2, weights=weights) # Fast and numerically precise return (average, math.sqrt(variance))
Example 5
def draw_links(self,n=1,log_sampling=False): """ Draw multiple random links. """ urls = [] domain_array = np.array([dmn for dmn in self.domain_links]) domain_count = np.array([len(self.domain_links[domain_array[k]]) for k in range(domain_array.shape[0])]) p = np.array([np.float(c) for c in domain_count]) count_total = p.sum() if log_sampling: # log-sampling [log(x+1)] to bias lower count domains p = np.fromiter((np.log1p(x) for x in p), dtype=p.dtype) if count_total > 0: p = p/p.sum() cnts = npr.multinomial(n, pvals=p) if n > 1: for k in range(cnts.shape[0]): domain = domain_array[k] cnt = min(cnts[k],domain_count[k]) for url in random.sample(self.domain_links[domain],cnt): urls.append(url) else: k = int(np.nonzero(cnts)[0]) domain = domain_array[k] url = random.sample(self.domain_links[domain],1)[0] urls.append(url) return urls
Example 6
def __init__(self): super().__init__() stack = self._stack # classes self.classes_ = [0, 1, 2] self.average_classes = [0, 2] # data self.data_dir = 'data/twitter/semeval_2016_submit' with temp_chdir(self.data_dir): self.train_objs = JSONDecoder(stack.enter_context(open('train.json'))) self.train_docs = FieldExtractor(self.train_objs, 'text') self.train_labels = np.fromiter(FieldExtractor(self.train_objs, 'label'), 'int32') distant_srs = [stack.enter_context(open('../emote/class_{}.txt'.format(i), encoding='utf-8')) for i in [0, 2]] self.distant_docs = BalancedSlice(distant_srs) self.distant_labels = BalancedSlice((RepeatSr(0), RepeatSr(2))) unsup_sr = stack.enter_context(open('../unsup/all.txt', encoding='utf-8')) self.unsup_docs = BalancedSlice([unsup_sr]) self.val_objs = JSONDecoder(stack.enter_context(open('val.json'))) self.val_docs = FieldExtractor(self.val_objs, 'text') self.val_labels = FieldExtractor(self.val_objs, 'label') self.test_objs = JSONDecoder(stack.enter_context(open('test.json'))) self.test_docs = FieldExtractor(self.test_objs, 'text') self.test_labels = FieldExtractor(self.test_objs, 'label')
Example 7
def __init__(self): super().__init__() stack = self._stack # classes self.classes_ = [0, 1, 2] self.average_classes = [0, 2] # data self.data_dir = 'data/imdb' with temp_chdir(self.data_dir): self.train_objs = JSONDecoder(stack.enter_context(open('train.json'))) self.train_docs = FieldExtractor(self.train_objs, 'text') self.train_labels = np.fromiter(FieldExtractor(self.train_objs, 'label'), 'int32') unsup_sr = stack.enter_context(open('unsup.json')) self.unsup_docs = BalancedSlice([FieldExtractor(unsup_sr, 'text')]) self.val_objs = JSONDecoder(stack.enter_context(open('val.json'))) self.val_docs = FieldExtractor(self.val_objs, 'text') self.val_labels = FieldExtractor(self.val_objs, 'label') self.test_objs = JSONDecoder(stack.enter_context(open('test.json'))) self.test_docs = FieldExtractor(self.test_objs, 'text') self.test_labels = FieldExtractor(self.test_objs, 'label')
Example 8
def __init__(self): super().__init__() stack = self._stack # classes self.classes_ = [1, 2, 3, 4, 5] self.average_classes = [1, 2, 3, 4, 5] # data self.data_dir = 'data/yelp' with temp_chdir(self.data_dir): self.train_objs = JSONDecoder(stack.enter_context(open('train.json'))) self.train_docs = FieldExtractor(self.train_objs, 'text') self.train_labels = np.fromiter(FieldExtractor(self.train_objs, 'stars'), 'int32') self.val_objs = JSONDecoder(stack.enter_context(open('val.json'))) self.val_docs = FieldExtractor(self.val_objs, 'text') self.val_labels = FieldExtractor(self.val_objs, 'stars') self.test_objs = JSONDecoder(stack.enter_context(open('test.json'))) self.test_docs = FieldExtractor(self.test_objs, 'text') self.test_labels = FieldExtractor(self.test_objs, 'stars')
Example 9
def test(): # create a bunch of random data for X-axis # uniformly generate 2-D vectors in [-50, 50] X = 100*np.random.random([NUM_SAMPLES, 2]) - 50 # create a bunch of random data for Y-axis # let's say y = 5x1 - 2x2 + 3 + noise # true beta is then: [3, 5, -2] Y = np.fromiter((5*x1 - 2*x2 + 3 for x1, x2 in X), np.float, count=NUM_SAMPLES) Y += np.random.standard_normal(NUM_SAMPLES) # fit lr = LinearRegression() lr.fit(X,Y) print "beta estimated: %s" % lr.beta r2 = lr.score(X,Y) print "R-square is: %s" % r2 # predict x = (100, 100) h = lr.predict(np.array([x])) y = 5*x[0] - 2*x[1] + 3 print "Extrapolated prediction: %.2f\nActual: %.2f" % (h, y)
Example 10
def read_vectors(fin, dtype='float64', delim=' '): """Return a list with tuples (word, word_vector).""" reader = csv.reader(fin, delimiter=delim, quoting=csv.QUOTE_NONE) word_vectors = [] ncol = None for row in reader: if ncol is None: if len(row) == 2: ncol = int(row[1]) continue else: ncol = len(row) - 1 word = unicode(row[0], 'utf-8', errors='replace') word_vector = np.fromiter( [float(v) for v in row[1: ncol + 1]], dtype=dtype, count=ncol) word_vectors.append((word, word_vector)) return word_vectors
Example 11
def lsb_encode(data, image): bytes_io = BytesIO() dump(data, file=bytes_io) data_bytes = bytes_io.getvalue() data_bytes_array = np.fromiter(data_bytes, dtype=np.uint8) data_bits_list = np.unpackbits(data_bytes_array).tolist() data_bits_list += [0] * (image.size[0] * image.size[1] - len(data_bits_list)) watermark = Image.frombytes(data=bytes(data_bits_list), size=image.size, mode='L') red, green, blue = image.split() watermarked_red = ImageMath.eval("convert(a&0xFE|b&0x1,'L')", a=red, b=watermark) watermarked_image = Image.merge("RGB", (watermarked_red, green, blue)) return watermarked_image
Example 12
def decons_obs_group_ids(comp_ids, obs_ids, shape, labels, xnull): """ reconstruct labels from observed group ids Parameters ---------- xnull: boolean, if nulls are excluded; i.e. -1 labels are passed through """ from pandas.hashtable import unique_label_indices if not xnull: lift = np.fromiter(((a == -1).any() for a in labels), dtype='i8') shape = np.asarray(shape, dtype='i8') + lift if not _int64_overflow_possible(shape): # obs ids are deconstructable! take the fast route! out = decons_group_index(obs_ids, shape) return out if xnull or not lift.any() \ else [x - y for x, y in zip(out, lift)] i = unique_label_indices(comp_ids) i8copy = lambda a: a.astype('i8', subok=False, copy=True) return [i8copy(lab[i]) for lab in labels]
Example 13
def cartesian_product(X): ''' Numpy version of itertools.product or pandas.compat.product. Sometimes faster (for large inputs)... Examples -------- >>> cartesian_product([list('ABC'), [1, 2]]) [array(['A', 'A', 'B', 'B', 'C', 'C'], dtype='|S1'), array([1, 2, 1, 2, 1, 2])] ''' lenX = np.fromiter((len(x) for x in X), dtype=int) cumprodX = np.cumproduct(lenX) a = np.roll(cumprodX, 1) a[0] = 1 b = cumprodX[-1] / cumprodX return [np.tile(np.repeat(np.asarray(com._values_from_object(x)), b[i]), np.product(a[i])) for i, x in enumerate(X)]
Example 14
def r(self): """ Pearson correlation of the fitted Variogram :return: """ # get the experimental and theoretical variogram and cacluate means experimental, model = self.__model_deviations() mx = np.nanmean(experimental) my = np.nanmean(model) # claculate the single pearson correlation terms term1 = np.nansum(np.fromiter(map(lambda x, y: (x-mx) * (y-my), experimental, model), np.float)) t2x = np.nansum(np.fromiter(map(lambda x: (x-mx)**2, experimental), np.float)) t2y = np.nansum(np.fromiter(map(lambda y: (y-my)**2, model), np.float)) return term1 / (np.sqrt(t2x * t2y))
Example 15
def trajectory_lengths(self, stride=1, skip=0): r""" Returns the length of each trajectory. Parameters ---------- stride : int return value is the number of frames of the trajectories when running through them with a step size of `stride`. skip : int skip parameter Returns ------- array(dtype=int) : containing length of each trajectory """ n = self.number_of_trajectories() if isinstance(stride, np.ndarray): return np.fromiter((self.trajectory_length(itraj, stride) for itraj in range(n)), dtype=int, count=n) else: return np.fromiter(((l - skip - 1) // stride + 1 for l in self._lengths), dtype=int, count=n)
Example 16
def test_ttv_array_like_data_source(self): dummy_data_source = DummyDataSource() subject_info_dir = os.path.join('test', 'dummy_data', 'metadata') ttv = yaml_to_dict(os.path.join(subject_info_dir, 'dummy_ttv.yaml')) array_ds = TTVArrayLikeDataSource(dummy_data_source, ttv) self.assertEqual(len(array_ds), 3) all_values = np.fromiter((x for x in array_ds[:]), dtype='int16') self.assertTrue( np.all( np.in1d( all_values, np.array([1, 2, 3]) ) ) )
Example 17
def set_languages(self, langs=None): logger.debug("restricting languages to: %s", langs) # Unpack the full original model. This is needed in case the language set # has been previously trimmed, and the new set is not a subset of the current # set. nb_ptc, nb_pc, nb_classes = self.__full_model if langs is None: self.nb_classes = nb_classes self.nb_ptc = nb_ptc self.nb_pc = nb_pc else: # We were passed a restricted set of languages. Trim the arrays accordingly # to speed up processing. for lang in langs: if lang not in nb_classes: raise ValueError("Unknown language code %s" % lang) subset_mask = np.fromiter((l in langs for l in nb_classes), dtype=bool) self.nb_classes = [ c for c in nb_classes if c in langs ] self.nb_ptc = nb_ptc[:,subset_mask] self.nb_pc = nb_pc[subset_mask]
Example 18
def write_stats_to_file(filename, counts, mincount): os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename + ".txt", 'w', encoding="utf-8") as f: if args.perc == 0: percentile = 0 else: percentile = numpy.percentile(numpy.fromiter(counts.values(), numpy.int32), args.perc) threshold = max(percentile, mincount) for k, v in counts.items(): if v >= threshold: entry = k.split(SEPARATOR) entry.append(str(v)) f.write('\t'.join(entry) + '\n') if args.pickle: with open(filename + ".pickle", 'wb') as f: pickle.dump(counts, f)
Example 19
def _eval_all(emb_simset): inp_emb = {} for wordvec in emb_simset.iterrows(): word, vec = wordvec[1][0], wordvec[1][1:].tolist() vec = np.fromiter(map(float, vec[1:]), dtype = np.float32) norm = np.linalg.norm(vec) inp_emb[word] = vec/norm if (norm != 0) else [vec] score_dict = {} score_dict['score'] = 0 for root,dirs,files in os.walk('/home/jared/vecshare/Test_Input'): files = [testfile for testfile in files if testfile[0]!='.'] for testfile in files: f_path = '/home/jared/vecshare/Test_Input/'+testfile score_dict[testfile[:-4].strip().lower().replace(" ", "_").replace("-", "_")] = _eval_sim(f_path, inp_emb) if testfile != 'mc-30.csv': score_dict['score'] += _eval_sim(f_path, inp_emb)/(len(files)-1) return score_dict
Example 20
def cdf_dlf(x, A, m1, a1, m2, a2, start=-26): ''' Cumulative Schechter function. Second LF is set to be 2*A of first LF. @param x: magnitude @param A: Scale factor @param m1: Knee of distribution 1 @param a1: Faint-end turnover of first lf @param m2: Knee of distribution 2 @param a2: Faint-end turnover of second lf @param start: Brightest magnitude @return Probability that galaxy has a magnitude greater than x ''' def integrate(in_x): return quad(dlf, start,in_x,args=(A,m1,a1,m2,a2))[0] if np.isscalar(x): x = np.array([x]) return np.fromiter(map(integrate,x),np.float,count=len(x))
Example 21
def inv_cdf_dlf(p, A, m1, a1, m2, a2, start=-26, end=-15): ''' Inverse Cumulative Schechter function. Second LF is set to be 2*A of first LF. @param p: probability @param A: Scale factor @param m1: Knee of distribution 1 @param a1: Faint-end turnover of first lf @param m2: Knee of distribution 2 @param a2: Faint-end turnover of second lf @param start: Brightest magnitude @param end: Faintest possible magnitude @return Magnitude associated with cdf probability p ''' def get_root(p): return root(lambda x: cdf_dlf(x,A,m1,a1,m2,a2,start)-p, (start + end)/2).x[0] if np.isscalar(p): return get_root(p) else: return np.fromiter(map(get_root,p),np.float,count=len(p))
Example 22
def _read_symbol(self): dividends = [] rawsymbol = self.f.read(16) if rawsymbol == b'': raise EOFError symbol = unpack('16s', rawsymbol)[0].replace(b'\x00', b'') rawdate = self.f.read(4) dt = np.dtype([('time', np.int32), ('split', np.float32), ('purchase', np.float32), ('purchase_price', np.float32), ('dividend', np.float32)]) while (rawdate) != b"\xff" * 4: dividend = np.frombuffer(rawdate + self.f.read(16), dtype=dt) dividends.append(dividend) rawdate = self.f.read(4) if rawdate == b'': break return (symbol, np.fromiter(dividends, dtype=dt))
Example 23
def points_random_3d(count, range_x=(-10.0, 10.0), range_y=(-10.0, 10.0), range_z=(-10.0, 10.0), seed=None): """ Generates random positions :param count: Number of points :param range_x: min-max range for x axis :param range_y: min-max range for y axis :param range_z: min-max range for z axis :param seed: The random seed to be used """ random.seed(seed) def gen(): for i in range(count): yield random.uniform(*range_x) yield random.uniform(*range_y) yield random.uniform(*range_z) data = numpy.fromiter(gen(), count=count * 3, dtype=numpy.float32) pos = VBO(data) vao = VAO("geometry:points_random_3d", mode=GL.GL_POINTS) vao.add_array_buffer(GL.GL_FLOAT, pos) vao.map_buffer(pos, "in_position", 3) vao.build() return vao
Example 24
def parseNpf(self, buffer, imageWidth, imageHeight): # Read the header sectionLengths = self._readUgarHeader(buffer) # Read the palette data (section number 1) paletteData = np.frombuffer(buffer.read(roundToPower(sectionLengths[0])), dtype=np.uint16) # Read the image data (section number 2) imageData = np.frombuffer(buffer.read(sectionLengths[1]), dtype=np.uint8) # NPF image data uses 1 byte per 2 pixels, so we need to split that byte into two imageData = np.stack((np.bitwise_and(imageData, 0x0f), np.bitwise_and(imageData >> 4, 0x0f)), axis=-1).flatten() # Unpack palette colors palette = unpackColors(paletteData, useAlpha=False) # Convert each pixel from a palette index to full color pixels = np.fromiter((palette[i] if i > 0 else 0 for i in imageData), dtype=">u4") # Clip the image data and create a Pillow image from it return Image.fromarray(self._clipImageData(pixels, (imageWidth, imageHeight)), mode="RGBA") # Write the image as an npf to buffer
Example 25
def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y)
Example 26
def _filter_dates(dates, freq, kwargs): """ This function filters dates to indicate end of periods for ordinals. """ indicator = DATETIME_DICT[freq] if isinstance(indicator, str): # no special behavior indicators = np.fromiter( [date.__getattribute__(indicator) for date in dates], dtype=np.int32) return np.argwhere(indicators[1:] - indicators[:-1] > 0) else: # apply a function indicators = np.fromiter( [indicator(date, kwargs) for date in dates], dtype=np.int32) return np.argwhere(indicators[1:] - indicators[:-1] > 0)
Example 27
def write_tables(): import tables dtype = np.dtype("S7,f4,f4,f4,f4,i4") t0 = time() sarray = np.fromiter(((str(i), float(i), float(2*i), None, float(4*i), i) for i in xrange(N)), dtype, count=N) t1 = time() - t0 print "Created sarray with %d rows in %.3fs" % (N, t1) t0 = time() h5f = tables.openFile("market.h5", "w") table = h5f.createTable(h5f.root, "market", dtype) table.append(sarray) h5f.close() t1 = time() - t0 print "[PyTables] Stored %d rows in %.3fs" % (N, t1)
Example 28
def write_tables2(): import tables dtype = np.dtype("S7,f4,f4,f4,f4,i4") # t0 = time() # sarray = np.fromiter(((str(i), float(i), float(2*i), None, float(4*i), i) # for i in xrange(N)), dtype, count=N) # t1 = time() - t0 # print "Created sarray with %d rows in %.3fs" % (N, t1) t0 = time() h5f = tables.openFile("market.h5", "w") table = h5f.createTable(h5f.root, "market", dtype) count = 10000 for j in xrange(count, N, count): sarray = np.fromiter(((str(i), float(i), float(2*i), None, float(4*i), i) for i in xrange(j)), dtype) table.append(sarray) h5f.close() t1 = time() - t0 print "[PyTables] Stored %d rows in %.3fs" % (N, t1)
Example 29
def write_umi_info(pickles, filename): """" Write an H5 with (bc, chain, read_count) tuples """ filters = tables.Filters(complevel = cr_constants.H5_COMPRESSION_LEVEL) with tables.open_file(filename, 'w', filters=filters) as h5: umi_info = vdj_umi_info.create_arrays(h5) bc_to_int = {} chain_to_int = {} for pickle in pickles: bc_chain_umi_counts = cPickle.load(open(pickle)) for bc, chain_umis in bc_chain_umi_counts.iteritems(): for chain, umi_counts in chain_umis.iteritems(): n_umis = len(umi_counts) if chain != cr_constants.MULTI_REFS_PREFIX and n_umis > 0: if bc not in bc_to_int: bc_to_int[bc] = len(bc_to_int) if chain not in chain_to_int: chain_to_int[chain] = len(chain_to_int) umi_info['barcode_idx'].append(np.full(n_umis, bc_to_int[bc], dtype=vdj_umi_info.get_dtype('barcode_idx'))) umi_info['chain_idx'].append(np.full(n_umis, chain_to_int[chain], dtype=vdj_umi_info.get_dtype('chain_idx'))) umi_info['reads'].append(np.fromiter(umi_counts.itervalues(), vdj_umi_info.get_dtype('reads'), count=n_umis)) vdj_umi_info.set_ref_column(h5, 'barcodes', np.array(sorted(bc_to_int.keys(), key=bc_to_int.get))) vdj_umi_info.set_ref_column(h5, 'chains', np.array(sorted(chain_to_int.keys(), key=chain_to_int.get)))
Example 30
def where_close(pos, separation, intensity=None): """ Returns indices of features that are closer than separation from other features. When intensity is given, the one with the lowest intensity is returned: else the most topleft is returned (to avoid randomness) To be implemented in trackpy v0.4""" if len(pos) == 0: return [] separation = validate_tuple(separation, pos.shape[1]) if any([s == 0 for s in separation]): return [] # Rescale positions, so that pairs are identified below a distance # of 1. pos_rescaled = pos / separation duplicates = cKDTree(pos_rescaled, 30).query_pairs(1 - 1e-7) if len(duplicates) == 0: return [] index_0 = np.fromiter((x[0] for x in duplicates), dtype=int) index_1 = np.fromiter((x[1] for x in duplicates), dtype=int) if intensity is None: to_drop = np.where(np.sum(pos_rescaled[index_0], 1) > np.sum(pos_rescaled[index_1], 1), index_1, index_0) else: intensity_0 = intensity[index_0] intensity_1 = intensity[index_1] to_drop = np.where(intensity_0 > intensity_1, index_1, index_0) edge_cases = intensity_0 == intensity_1 if np.any(edge_cases): index_0 = index_0[edge_cases] index_1 = index_1[edge_cases] to_drop[edge_cases] = np.where(np.sum(pos_rescaled[index_0], 1) > np.sum(pos_rescaled[index_1], 1), index_1, index_0) return np.unique(to_drop)
Example 31
def make_program(shape): """ Returns numpy array containing the eval instructions for eval """ return numpy.fromiter(_make_program_pieces(shape), pyopencl.cltypes.float)
Example 32
def make_program(shape): """ Returns numpy array containing the eval instructions for eval """ return numpy.fromiter(_make_program_pieces(shape), pyopencl.cltypes.float)
Example 33
def __array__(self, dtype=None): """NumPy array protocol; returns iterator values as an ndarray.""" if self._value is None: # Call fromiter if we can; it is faster and avoids the extra # copy, but doesn't support object types and requires a dtype. if dtype is None or dtype.hasobject: self._value = np.array(list(self._iterator), dtype) else: self._value = np.fromiter(self._iterator, dtype) return self._value
Example 34
def test_mem_on_invalid_dtype(self): "Ticket #583" self.assertRaises(ValueError, np.fromiter, [['12', ''], ['13', '']], str)
Example 35
def test_mem_fromiter_invalid_dtype_string(self, level=rlevel): x = [1, 2, 3] self.assertRaises(ValueError, np.fromiter, [xi for xi in x], dtype='S')
Example 36
def test_fromiter_bytes(self): # Ticket #1058 a = np.fromiter(list(range(10)), dtype='b') b = np.fromiter(list(range(10)), dtype='B') assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
Example 37
def test_fromiter_comparison(self, level=rlevel): a = np.fromiter(list(range(10)), dtype='b') b = np.fromiter(list(range(10)), dtype='B') assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
Example 38
def test_duplicate_field_names_assign(self): ra = np.fromiter(((i*3, i*2) for i in range(10)), dtype='i8,f8') ra.dtype.names = ('f1', 'f2') repr(ra) # should not cause a segmentation fault assert_raises(ValueError, setattr, ra.dtype, 'names', ('f1', 'f1'))
Example 39
def test_lengths(self): expected = np.array(list(self.makegen())) a = np.fromiter(self.makegen(), int) a20 = np.fromiter(self.makegen(), int, 20) self.assertTrue(len(a) == len(expected)) self.assertTrue(len(a20) == 20) self.assertRaises(ValueError, np.fromiter, self.makegen(), int, len(expected) + 10)
Example 40
def test_values(self): expected = np.array(list(self.makegen())) a = np.fromiter(self.makegen(), int) a20 = np.fromiter(self.makegen(), int, 20) self.assertTrue(np.alltrue(a == expected, axis=0)) self.assertTrue(np.alltrue(a20 == expected[:20], axis=0))
Example 41
def test_2592(self): # Test iteration exceptions are correctly raised. count, eindex = 10, 5 self.assertRaises(NIterError, np.fromiter, self.load_data(count, eindex), dtype=int, count=count)
Example 42
def test_2592_edge(self): # Test iter. exceptions, edge case (exception at end of iterator). count = 10 eindex = count-1 self.assertRaises(NIterError, np.fromiter, self.load_data(count, eindex), dtype=int, count=count)
Example 43
def from_pydata(cls, faces): loop_total = np.empty(len(faces), dtype=np.uint32) loop_start = np.zeros(len(faces), dtype=np.uint32) loop_total[:] = tuple(map(len, faces)) loop_start[1:] = loop_total[:-1].cumsum() vertex_indices = np.fromiter(chain.from_iterable(faces), dtype=np.uint32,) #count=loop_start.sum()) return cls(loop_start, loop_total, vertex_indices)
Example 44
def _calculate(self, period): data = list(self.loadTradesForPeriod(period)) if len(data) == 0: raise InsufficientDataError() values = np.fromiter(map(attrgetter('price'), data), np.float, len(data)) weights = np.fromiter(map(attrgetter('volume'), data), np.float, len(data)) mean, std = weighted_avg_and_std(values, weights) return (mean,)
Example 45
def rle(array, low_mem=False): """Calculate a run length encoding (rle), of an input vector. :param array: 1D input array. :param low_mem: use a lower memory implementation returns: structured array with fields `start`, `length`, and `value`. """ if len(array.shape) != 1: raise TypeError("Input array must be one dimensional.") dtype = [('length', int), ('start', int), ('value', array.dtype)] if not low_mem: pos = np.where(np.diff(array) != 0)[0] pos = np.concatenate(([0], pos+1, [len(array)])) return np.fromiter( ((length, start, array[start]) for (length, start) in zip(pos[1:], pos[:-1])), dtype, count=len(pos) - 1, ) else: def _gen(): start = 0 for key, group in itertools.groupby(array): length = sum(1 for x in group) yield length, start, key start += length return np.fromiter(_gen(), dtype=dtype)
Example 46
def encode_text(text, char2id=CHAR2ID): """ encode text to array of integers with CHAR2ID """ return np.fromiter((char2id.get(ch, 0) for ch in text), int)
Example 47
def entropy(self,p): return -np.fromiter((self.xlgx(x) for x in p.flatten()),dtype=p.dtype).sum()
Example 48
def draw_domain(self,log_sampling=False): """ Draw a single, random domain. """ domain = None domain_array = np.array([dmn for dmn in self.domain_links]) domain_count = np.array([len(self.domain_links[domain_array[k]]) for k in range(domain_array.shape[0])]) p = np.array([np.float(c) for c in domain_count]) count_total = p.sum() if log_sampling: # log-sampling [log(x+1)] to bias lower count domains p = np.fromiter((np.log1p(x) for x in p), dtype=p.dtype) if count_total > 0: p = p/p.sum() cnts = npr.multinomial(1, pvals=p) k = int(np.nonzero(cnts)[0]) domain = domain_array[k] return domain
Example 49
def test_mem_on_invalid_dtype(self): "Ticket #583" self.assertRaises(ValueError, np.fromiter, [['12', ''], ['13', '']], str)
Example 50
def test_mem_fromiter_invalid_dtype_string(self, level=rlevel): x = [1, 2, 3] self.assertRaises(ValueError, np.fromiter, [xi for xi in x], dtype='S')