# Python numpy.sinh() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

```def quadrf(ev, y):
L = ev[1]      # length
k = ev[4]      # quadrupole strength
if k == 0:
R = drift(ev, y)
else:
wrzlk = sqrt(abs(k))
Omega = wrzlk*L
coshom = cosh(Omega)
sinhom = sinh(Omega)
cosom = cos(Omega)
sinom = sin(Omega)
R = array([
[cosom,        sinom/wrzlk, 0.,           0.,           0., 0.],
[-wrzlk*sinom, cosom,       0.,           0.,           0., 0.],
[0.,            0.,         coshom,       sinhom/wrzlk, 0., 0.],
[0.,            0.,         wrzlk*sinhom, coshom,       0., 0.],
[0.,            0.,         0.,           0.,           1., L/(y**2)],
[0.,            0.,         0.,           0.,           0., 1.]
])
return R ```

Example 2

```def quadaf(ev, y):
L = ev[1]      # length
k = ev[4]      # quadrupole strength
if k == 0:
R = drift(ev, y)
else:
wrzlk = sqrt(abs(k))
Omega = wrzlk*L
coshom = cosh(Omega)
sinhom = sinh(Omega)
cosom = cos(Omega)
sinom = sin(Omega)
R = array([
[coshom,       sinhom/wrzlk, 0.,           0.,          0., 0],
[wrzlk*sinhom, coshom,       0.,           0.,          0., 0],
[0.,           0.,           cosom,        sinom/wrzlk, 0., 0],
[0.,           0.,           -wrzlk*sinom, cosom,       0., 0],
[0.,           0.,           0.,           0.,          1., L/(y**2)],
[0.,           0.,           0.,           0.,          0., 1.]
])
return R ```

Example 3

```def redshift(self, age):
"""
Invert the above ``self.age(z)`` formula analytically, to calculate
the redshift corresponding to the given cosmic time (age).

Parameters
----------
age : `~numpy.ndarray`
Age of the universe (i.e., cosmic time)
Unit: [Gyr]

Returns
-------
z : `~numpy.ndarray`
Redshift corresponding to the specified age.
"""
age = np.asarray(age)
t_H = self.hubble_time
term1 = (1/self.Om0) - 1
term2 = np.sinh(3*age * np.sqrt(1-self.Om0) / (2*t_H)) ** 2
z = (term1 / term2) ** (1/3) - 1
return z ```

Example 4

```def _keplerian_to_keplerian_mean(cls, coord, center):
"""Conversion from Keplerian to Keplerian Mean

The difference is the use of Mean anomaly instead of True anomaly
"""

a, e, i, ?, ?, ? = coord
if e < 1:
# Elliptic case
E = arccos((e + cos(?)) / (1 + e * cos(?)))  # Eccentric anomaly
M = E - e * sin(E)  # Mean anomaly
else:
# Hyperbolic case
H = arccosh((e + cos(?)) / (1 + e * cos(?)))
M = e * sinh(H) - H

return np.array([a, e, i, ?, ?, M], dtype=float) ```

Example 5

```def sinh(self, out=None):
assert out is None
return self.elemwise(np.sinh) ```

Example 6

```def Dm(self, z, cm=False, meter=False, pc=False, kpc=False, mpc=False):
Ok  = self.Ok()
sOk = num.sqrt(num.abs(Ok))
Dc  = self.Dc(z)
Dh  = self.Dh()

conversion = self.lengthConversion(cm=cm, meter=meter, pc=pc, kpc=kpc, mpc=mpc)

if Ok > 0:
return Dh / sOk * num.sinh(sOk * Dc / Dh) * conversion
elif Ok == 0:
return Dc * conversion
else:
return Dh / sOk * num.sin(sOk * Dc / Dh) * conversion

# Angular diameter distance
# Ratio of an objects physical transvserse size to its angular size in radians ```

Example 7

```def test_basic_ufuncs(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
assert_equal(np.cos(x), cos(xm))
assert_equal(np.cosh(x), cosh(xm))
assert_equal(np.sin(x), sin(xm))
assert_equal(np.sinh(x), sinh(xm))
assert_equal(np.tan(x), tan(xm))
assert_equal(np.tanh(x), tanh(xm))
assert_equal(np.sqrt(abs(x)), sqrt(xm))
assert_equal(np.log(abs(x)), log(xm))
assert_equal(np.log10(abs(x)), log10(xm))
assert_equal(np.exp(x), exp(xm))
assert_equal(np.arcsin(z), arcsin(zm))
assert_equal(np.arccos(z), arccos(zm))
assert_equal(np.arctan(z), arctan(zm))
assert_equal(np.arctan2(x, y), arctan2(xm, ym))
assert_equal(np.absolute(x), absolute(xm))
assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
assert_equal(np.equal(x, y), equal(xm, ym))
assert_equal(np.not_equal(x, y), not_equal(xm, ym))
assert_equal(np.less(x, y), less(xm, ym))
assert_equal(np.greater(x, y), greater(xm, ym))
assert_equal(np.less_equal(x, y), less_equal(xm, ym))
assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
assert_equal(np.conjugate(x), conjugate(xm)) ```

Example 8

```def test_testUfuncRegression(self):
# Tests new ufuncs on MaskedArrays.
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
'floor', 'ceil',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor',
]:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(numpy.ma.core, f)
args = self.d[:uf.nin]
ur = uf(*args)
mr = mf(*args)
assert_equal(ur.filled(0), mr.filled(0), f)

Example 9

```def test_testUfuncs1(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
self.assertTrue(eq(np.cos(x), cos(xm)))
self.assertTrue(eq(np.cosh(x), cosh(xm)))
self.assertTrue(eq(np.sin(x), sin(xm)))
self.assertTrue(eq(np.sinh(x), sinh(xm)))
self.assertTrue(eq(np.tan(x), tan(xm)))
self.assertTrue(eq(np.tanh(x), tanh(xm)))
with np.errstate(divide='ignore', invalid='ignore'):
self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm)))
self.assertTrue(eq(np.log(abs(x)), log(xm)))
self.assertTrue(eq(np.log10(abs(x)), log10(xm)))
self.assertTrue(eq(np.exp(x), exp(xm)))
self.assertTrue(eq(np.arcsin(z), arcsin(zm)))
self.assertTrue(eq(np.arccos(z), arccos(zm)))
self.assertTrue(eq(np.arctan(z), arctan(zm)))
self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym)))
self.assertTrue(eq(np.absolute(x), absolute(xm)))
self.assertTrue(eq(np.equal(x, y), equal(xm, ym)))
self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym)))
self.assertTrue(eq(np.less(x, y), less(xm, ym)))
self.assertTrue(eq(np.greater(x, y), greater(xm, ym)))
self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym)))
self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
self.assertTrue(eq(np.conjugate(x), conjugate(xm)))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y))))
self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x)))) ```

Example 10

```def test_testUfuncRegression(self):
f_invalid_ignore = [
'sqrt', 'arctanh', 'arcsin', 'arccos',
'arccosh', 'arctanh', 'log', 'log10', 'divide',
'true_divide', 'floor_divide', 'remainder', 'fmod']
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
'floor', 'ceil',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor']:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(np.ma, f)
args = self.d[:uf.nin]
with np.errstate():
if f in f_invalid_ignore:
np.seterr(invalid='ignore')
if f in ['arctanh', 'log', 'log10']:
np.seterr(divide='ignore')
ur = uf(*args)
mr = mf(*args)
self.assertTrue(eq(ur.filled(0), mr.filled(0), f))

Example 11

```def sinh(x: Number = 0.0) -> Number:
return np.sinh(x) ```

Example 12

```def bark2freq(b):
return 650.*np.sinh(b/7.) ```

Example 13

```def bark2freq(b):
return 650.*np.sinh(b/7.) ```

Example 14

```def bark2freq(b):
return 650*np.sinh(b/7) ```

Example 15

```def Dn_plane(l, r, N=10):
alpha = acosh(l/r)
s = 0.
for n in range(1, N):
n = float(n)
K = n*(n+1)/(2*n-1)/(2*n+3)
s += K*((2*sinh((2*n+1)*alpha)+(2*n+1)*sinh(2*alpha))/(4*(sinh((n+.5)*alpha))**2-(2*n+1)**2*(sinh(alpha))**2) - 1)
return 1./((4./3.)*sinh(alpha)*s) ```

Example 16

```def Dn_plane(l, r, N=20):
alpha = np.arccosh(l/r)
sinh = np.sinh
s = 0.
for n in range(1, N):
n = float(n)
K = n*(n+1)/(2*n-1)/(2*n+3)
s += K*((2*sinh((2*n+1)*alpha)+(2*n+1)*sinh(2*alpha))/(4*(sinh((n+.5)*alpha))**2-(2*n+1)**2*(sinh(alpha))**2) - 1)
return 1./((4./3.)*sinh(alpha)*s) ```

Example 17

```def Dn_plane(l, r, N=100):
alpha = acosh(l/r)
s = 0.
for n in range(1, N):
n = float(n)
K = n*(n+1)/(2*n-1)/(2*n+3)
s += K*((2*sinh((2*n+1)*alpha)+(2*n+1)*sinh(2*alpha))/(4*(sinh((n+.5)*alpha))**2-(2*n+1)**2*(sinh(alpha))**2) - 1)
return 1./((4./3.)*sinh(alpha)*s) ```

Example 18

```def Dn_plane(l, r, N=100):
alpha = acosh(l/r)
s = 0.
for n in range(1, N):
n = float(n)
K = n*(n+1)/(2*n-1)/(2*n+3)
s += K*((2*sinh((2*n+1)*alpha)+(2*n+1)*sinh(2*alpha))/(4*(sinh((n+.5)*alpha))**2-(2*n+1)**2*(sinh(alpha))**2) - 1)
return 1./((4./3.)*sinh(alpha)*s) ```

Example 19

```def sinh(v):
return v.__class__(numpy.sinh(v)) ```

Example 20

```def cir_int_rt_chf(u, t, k, theta, sigma, r0):
r = np.sqrt(k ** 2 - 1j * u * 2 * sigma ** 2)
cosh_fun = np.cosh(r * t / 2)
sinh_fun = np.sinh(r * t / 2)
coth_fun = cosh_fun / sinh_fun
a_t_v = np.exp(t * theta * (k ** 2) / (sigma ** 2)) / (cosh_fun + (k / r) * sinh_fun) ** (
2 * k * theta / (sigma ** 2))
b_t_v = 2 * 1j * u / (k + r * coth_fun)
return a_t_v * np.exp(b_t_v * r0) ```

Example 21

```def test_basic_ufuncs(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
assert_equal(np.cos(x), cos(xm))
assert_equal(np.cosh(x), cosh(xm))
assert_equal(np.sin(x), sin(xm))
assert_equal(np.sinh(x), sinh(xm))
assert_equal(np.tan(x), tan(xm))
assert_equal(np.tanh(x), tanh(xm))
assert_equal(np.sqrt(abs(x)), sqrt(xm))
assert_equal(np.log(abs(x)), log(xm))
assert_equal(np.log10(abs(x)), log10(xm))
assert_equal(np.exp(x), exp(xm))
assert_equal(np.arcsin(z), arcsin(zm))
assert_equal(np.arccos(z), arccos(zm))
assert_equal(np.arctan(z), arctan(zm))
assert_equal(np.arctan2(x, y), arctan2(xm, ym))
assert_equal(np.absolute(x), absolute(xm))
assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
assert_equal(np.equal(x, y), equal(xm, ym))
assert_equal(np.not_equal(x, y), not_equal(xm, ym))
assert_equal(np.less(x, y), less(xm, ym))
assert_equal(np.greater(x, y), greater(xm, ym))
assert_equal(np.less_equal(x, y), less_equal(xm, ym))
assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
assert_equal(np.conjugate(x), conjugate(xm)) ```

Example 22

```def test_testUfuncRegression(self):
# Tests new ufuncs on MaskedArrays.
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
'floor', 'ceil',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor',
]:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(numpy.ma.core, f)
args = self.d[:uf.nin]
ur = uf(*args)
mr = mf(*args)
assert_equal(ur.filled(0), mr.filled(0), f)

Example 23

```def test_testUfuncs1(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
self.assertTrue(eq(np.cos(x), cos(xm)))
self.assertTrue(eq(np.cosh(x), cosh(xm)))
self.assertTrue(eq(np.sin(x), sin(xm)))
self.assertTrue(eq(np.sinh(x), sinh(xm)))
self.assertTrue(eq(np.tan(x), tan(xm)))
self.assertTrue(eq(np.tanh(x), tanh(xm)))
with np.errstate(divide='ignore', invalid='ignore'):
self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm)))
self.assertTrue(eq(np.log(abs(x)), log(xm)))
self.assertTrue(eq(np.log10(abs(x)), log10(xm)))
self.assertTrue(eq(np.exp(x), exp(xm)))
self.assertTrue(eq(np.arcsin(z), arcsin(zm)))
self.assertTrue(eq(np.arccos(z), arccos(zm)))
self.assertTrue(eq(np.arctan(z), arctan(zm)))
self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym)))
self.assertTrue(eq(np.absolute(x), absolute(xm)))
self.assertTrue(eq(np.equal(x, y), equal(xm, ym)))
self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym)))
self.assertTrue(eq(np.less(x, y), less(xm, ym)))
self.assertTrue(eq(np.greater(x, y), greater(xm, ym)))
self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym)))
self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
self.assertTrue(eq(np.conjugate(x), conjugate(xm)))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y))))
self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x)))) ```

Example 24

```def test_testUfuncRegression(self):
f_invalid_ignore = [
'sqrt', 'arctanh', 'arcsin', 'arccos',
'arccosh', 'arctanh', 'log', 'log10', 'divide',
'true_divide', 'floor_divide', 'remainder', 'fmod']
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
'floor', 'ceil',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor']:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(np.ma, f)
args = self.d[:uf.nin]
with np.errstate():
if f in f_invalid_ignore:
np.seterr(invalid='ignore')
if f in ['arctanh', 'log', 'log10']:
np.seterr(divide='ignore')
ur = uf(*args)
mr = mf(*args)
self.assertTrue(eq(ur.filled(0), mr.filled(0), f))

Example 25

```def comoving_transverse_distance(self, z_i, z_f):
r"""
When multiplied by some angle, the distance between two objects
observed at redshift, z_f, with an angular separation given by that
angle, viewed by an observer at redshift, z_i (Hogg 1999).

Parameters
----------
z_i : float
The redshift of the observer.
z_f : float
The redshift of the observed object.

Examples
--------

>>> from yt.utilities.cosmology import Cosmology
>>> co = Cosmology()
>>> print(co.comoving_transverse_distance(0., 1.).in_units("Mpccm"))

"""
if (self.omega_curvature > 0):
return (self.hubble_distance() / np.sqrt(self.omega_curvature) *
np.sinh(np.sqrt(self.omega_curvature) *
self.hubble_distance())).in_base(self.unit_system)
elif (self.omega_curvature < 0):
return (self.hubble_distance() /
np.sqrt(np.fabs(self.omega_curvature)) *
np.sin(np.sqrt(np.fabs(self.omega_curvature)) *
self.hubble_distance())).in_base(self.unit_system)
else:

Example 26

```def __init__(self, generator: Generator=Autoincrement()):
super().__init__(numpy.sinh, generator) ```

Example 27

```def test_sinh():
fun = lambda x : 3.0 * np.sinh(x)

Example 28

```def integrate_fip(p, v, z, dt, omega2):
"""
Integrate the equation of motion of the Floating-base Inverted Pendulum.

Parameters
----------
p : array, shape=(3,)
Initial position.
v : array, shape=(3,)
Initial velocity.
z : array, shape=(3,)
ZMP location throughout the integration.
dt : scalar
Integration step.
omega2 : scalar
FIP constant.

Returns
-------
p_next : array, shape=(3,)
Position at the end of the integration step.
v_next : array, shape=(3,)
Velocity at the end of the integration step.

Note
----
The Linear Inverted Pendulum Mode (LIPM) is a special case of the FIP, so
this function also applies to COP-based controllers.
"""
omega = sqrt(omega2)
a = omega2 * (p - z) + gravity
p_next = p + v / omega * sinh(omega * dt) \
+ a / omega2 * (cosh(omega * dt) - 1.)
v_next = v * cosh(omega * dt) + a / omega * sinh(omega * dt)
return p_next, v_next ```

Example 29

```def test_basic_ufuncs(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
assert_equal(np.cos(x), cos(xm))
assert_equal(np.cosh(x), cosh(xm))
assert_equal(np.sin(x), sin(xm))
assert_equal(np.sinh(x), sinh(xm))
assert_equal(np.tan(x), tan(xm))
assert_equal(np.tanh(x), tanh(xm))
assert_equal(np.sqrt(abs(x)), sqrt(xm))
assert_equal(np.log(abs(x)), log(xm))
assert_equal(np.log10(abs(x)), log10(xm))
assert_equal(np.exp(x), exp(xm))
assert_equal(np.arcsin(z), arcsin(zm))
assert_equal(np.arccos(z), arccos(zm))
assert_equal(np.arctan(z), arctan(zm))
assert_equal(np.arctan2(x, y), arctan2(xm, ym))
assert_equal(np.absolute(x), absolute(xm))
assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
assert_equal(np.equal(x, y), equal(xm, ym))
assert_equal(np.not_equal(x, y), not_equal(xm, ym))
assert_equal(np.less(x, y), less(xm, ym))
assert_equal(np.greater(x, y), greater(xm, ym))
assert_equal(np.less_equal(x, y), less_equal(xm, ym))
assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
assert_equal(np.conjugate(x), conjugate(xm)) ```

Example 30

```def test_testUfuncRegression(self):
# Tests new ufuncs on MaskedArrays.
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
# 'nonzero', 'around',
'floor', 'ceil',
# 'sometrue', 'alltrue',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor',
]:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(numpy.ma.core, f)
args = self.d[:uf.nin]
ur = uf(*args)
mr = mf(*args)
assert_equal(ur.filled(0), mr.filled(0), f)

Example 31

```def test_testUfuncs1(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
self.assertTrue(eq(np.cos(x), cos(xm)))
self.assertTrue(eq(np.cosh(x), cosh(xm)))
self.assertTrue(eq(np.sin(x), sin(xm)))
self.assertTrue(eq(np.sinh(x), sinh(xm)))
self.assertTrue(eq(np.tan(x), tan(xm)))
self.assertTrue(eq(np.tanh(x), tanh(xm)))
with np.errstate(divide='ignore', invalid='ignore'):
self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm)))
self.assertTrue(eq(np.log(abs(x)), log(xm)))
self.assertTrue(eq(np.log10(abs(x)), log10(xm)))
self.assertTrue(eq(np.exp(x), exp(xm)))
self.assertTrue(eq(np.arcsin(z), arcsin(zm)))
self.assertTrue(eq(np.arccos(z), arccos(zm)))
self.assertTrue(eq(np.arctan(z), arctan(zm)))
self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym)))
self.assertTrue(eq(np.absolute(x), absolute(xm)))
self.assertTrue(eq(np.equal(x, y), equal(xm, ym)))
self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym)))
self.assertTrue(eq(np.less(x, y), less(xm, ym)))
self.assertTrue(eq(np.greater(x, y), greater(xm, ym)))
self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym)))
self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
self.assertTrue(eq(np.conjugate(x), conjugate(xm)))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y))))
self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x)))) ```

Example 32

```def test_testUfuncRegression(self):
f_invalid_ignore = [
'sqrt', 'arctanh', 'arcsin', 'arccos',
'arccosh', 'arctanh', 'log', 'log10', 'divide',
'true_divide', 'floor_divide', 'remainder', 'fmod']
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
# 'nonzero', 'around',
'floor', 'ceil',
# 'sometrue', 'alltrue',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor']:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(np.ma, f)
args = self.d[:uf.nin]
with np.errstate():
if f in f_invalid_ignore:
np.seterr(invalid='ignore')
if f in ['arctanh', 'log', 'log10']:
np.seterr(divide='ignore')
ur = uf(*args)
mr = mf(*args)
self.assertTrue(eq(ur.filled(0), mr.filled(0), f))

Example 33

```def test_basic_ufuncs(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
assert_equal(np.cos(x), cos(xm))
assert_equal(np.cosh(x), cosh(xm))
assert_equal(np.sin(x), sin(xm))
assert_equal(np.sinh(x), sinh(xm))
assert_equal(np.tan(x), tan(xm))
assert_equal(np.tanh(x), tanh(xm))
assert_equal(np.sqrt(abs(x)), sqrt(xm))
assert_equal(np.log(abs(x)), log(xm))
assert_equal(np.log10(abs(x)), log10(xm))
assert_equal(np.exp(x), exp(xm))
assert_equal(np.arcsin(z), arcsin(zm))
assert_equal(np.arccos(z), arccos(zm))
assert_equal(np.arctan(z), arctan(zm))
assert_equal(np.arctan2(x, y), arctan2(xm, ym))
assert_equal(np.absolute(x), absolute(xm))
assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
assert_equal(np.equal(x, y), equal(xm, ym))
assert_equal(np.not_equal(x, y), not_equal(xm, ym))
assert_equal(np.less(x, y), less(xm, ym))
assert_equal(np.greater(x, y), greater(xm, ym))
assert_equal(np.less_equal(x, y), less_equal(xm, ym))
assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
assert_equal(np.conjugate(x), conjugate(xm)) ```

Example 34

```def test_testUfuncRegression(self):
# Tests new ufuncs on MaskedArrays.
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
# 'nonzero', 'around',
'floor', 'ceil',
# 'sometrue', 'alltrue',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor',
]:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(numpy.ma.core, f)
args = self.d[:uf.nin]
ur = uf(*args)
mr = mf(*args)
assert_equal(ur.filled(0), mr.filled(0), f)

Example 35

```def test_testUfuncs1(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
self.assertTrue(eq(np.cos(x), cos(xm)))
self.assertTrue(eq(np.cosh(x), cosh(xm)))
self.assertTrue(eq(np.sin(x), sin(xm)))
self.assertTrue(eq(np.sinh(x), sinh(xm)))
self.assertTrue(eq(np.tan(x), tan(xm)))
self.assertTrue(eq(np.tanh(x), tanh(xm)))
with np.errstate(divide='ignore', invalid='ignore'):
self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm)))
self.assertTrue(eq(np.log(abs(x)), log(xm)))
self.assertTrue(eq(np.log10(abs(x)), log10(xm)))
self.assertTrue(eq(np.exp(x), exp(xm)))
self.assertTrue(eq(np.arcsin(z), arcsin(zm)))
self.assertTrue(eq(np.arccos(z), arccos(zm)))
self.assertTrue(eq(np.arctan(z), arctan(zm)))
self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym)))
self.assertTrue(eq(np.absolute(x), absolute(xm)))
self.assertTrue(eq(np.equal(x, y), equal(xm, ym)))
self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym)))
self.assertTrue(eq(np.less(x, y), less(xm, ym)))
self.assertTrue(eq(np.greater(x, y), greater(xm, ym)))
self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym)))
self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
self.assertTrue(eq(np.conjugate(x), conjugate(xm)))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y))))
self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x)))) ```

Example 36

```def test_testUfuncRegression(self):
f_invalid_ignore = [
'sqrt', 'arctanh', 'arcsin', 'arccos',
'arccosh', 'arctanh', 'log', 'log10', 'divide',
'true_divide', 'floor_divide', 'remainder', 'fmod']
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
# 'nonzero', 'around',
'floor', 'ceil',
# 'sometrue', 'alltrue',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor']:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(np.ma, f)
args = self.d[:uf.nin]
with np.errstate():
if f in f_invalid_ignore:
np.seterr(invalid='ignore')
if f in ['arctanh', 'log', 'log10']:
np.seterr(divide='ignore')
ur = uf(*args)
mr = mf(*args)
self.assertTrue(eq(ur.filled(0), mr.filled(0), f))

Example 37

```def bark2hz(self, Brk):
""" Method to compute Hz from Bark scale.
Args     :
Brk  : (ndarray)    Array containing Bark scaled values.
Returns  :
Fhz  : (ndarray)    Array containing frequencies in Hz.
"""
Fhz = 650. * np.sinh(Brk/7.)

return Fhz ```

Example 38

```def sinh(self):
out = copy.copy(self)
out.surface = np.sinh(out.surface)
return out ```

Example 39

```def analyticParitionFunctionValue(self, temperatureInKelvin):
"Canonical Partition Function Value for this Hamiltonian"
thermalEnergy = self.mySpace.unitHandler.BOLTZMANNS_CONSTANT_JOULES_PER_KELVIN * temperatureInKelvin
thermalEnergy = self.mySpace.unitHandler.energyUnitsFromJoules(thermalEnergy)
partitionEnergy = self.mySpace.hbar * self.omega * (.5)
return 0.5 * math.sinh(partitionEnergy / thermalEnergy)**-1.0 ```

Example 40

```def fun_scalar_scalar(self, x):
return np.sinh(x) ```

Example 41

```def _f1(self, z):
"""
Calculate function f1 from Hellstrom (1991)
"""
f1 = np.exp(self._beta*z)*(np.cosh(self._gamma*z)
- self._delta*np.sinh(self._gamma*z))
return f1 ```

Example 42

```def _f2(self, z):
"""
Calculate function f2 from Hellstrom (1991)
"""
f2 = np.exp(self._beta*z)*self._beta12/self._gamma \
* np.sinh(self._gamma*z)
return f2 ```

Example 43

```def _f3(self, z):
"""
Calculate function f3 from Hellstrom (1991)
"""
f3 = np.exp(self._beta*z)*(np.cosh(self._gamma*z)
+ self._delta*np.sinh(self._gamma*z))
return f3 ```

Example 44

```def _f4(self, z):
"""
Calculate function f4 from Hellstrom (1991)
"""
A = self._delta*self._beta1 + self._beta2*self._beta12/self._gamma
f4 = np.exp(self._beta*z) \
* (self._beta1*np.cosh(self._gamma*z) - A*np.sinh(self._gamma*z))
return f4 ```

Example 45

```def _f5(self, z):
"""
Calculate function f5 from Hellstrom (1991)
"""
B = self._delta*self._beta2 + self._beta1*self._beta12/self._gamma
f5 = np.exp(self._beta*z) \
* (self._beta2*np.cosh(self._gamma*z) + B*np.sinh(self._gamma*z))
return f5 ```

Example 46

```def _F5(self, z):
"""
Calculate integral of function f5 from Hellstrom (1991)
"""
B = self._delta*self._beta2 + self._beta1*self._beta12/self._gamma
C = self._beta2*self._beta - B*self._gamma
S = - (self._beta2*self._gamma - self._beta*B)
denom = (self._beta**2 - self._gamma**2)
F5 = np.exp(self._beta*z) / denom \
* (C*np.cosh(self._gamma*z) + S*np.sinh(self._gamma*z))
return F5 ```

Example 47

```def test_basic_ufuncs(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
assert_equal(np.cos(x), cos(xm))
assert_equal(np.cosh(x), cosh(xm))
assert_equal(np.sin(x), sin(xm))
assert_equal(np.sinh(x), sinh(xm))
assert_equal(np.tan(x), tan(xm))
assert_equal(np.tanh(x), tanh(xm))
assert_equal(np.sqrt(abs(x)), sqrt(xm))
assert_equal(np.log(abs(x)), log(xm))
assert_equal(np.log10(abs(x)), log10(xm))
assert_equal(np.exp(x), exp(xm))
assert_equal(np.arcsin(z), arcsin(zm))
assert_equal(np.arccos(z), arccos(zm))
assert_equal(np.arctan(z), arctan(zm))
assert_equal(np.arctan2(x, y), arctan2(xm, ym))
assert_equal(np.absolute(x), absolute(xm))
assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
assert_equal(np.equal(x, y), equal(xm, ym))
assert_equal(np.not_equal(x, y), not_equal(xm, ym))
assert_equal(np.less(x, y), less(xm, ym))
assert_equal(np.greater(x, y), greater(xm, ym))
assert_equal(np.less_equal(x, y), less_equal(xm, ym))
assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
assert_equal(np.conjugate(x), conjugate(xm)) ```

Example 48

```def test_testUfuncRegression(self):
# Tests new ufuncs on MaskedArrays.
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
'floor', 'ceil',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor',
]:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(numpy.ma.core, f)
args = self.d[:uf.nin]
ur = uf(*args)
mr = mf(*args)
assert_equal(ur.filled(0), mr.filled(0), f)

Example 49

```def test_testUfuncs1(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
self.assertTrue(eq(np.cos(x), cos(xm)))
self.assertTrue(eq(np.cosh(x), cosh(xm)))
self.assertTrue(eq(np.sin(x), sin(xm)))
self.assertTrue(eq(np.sinh(x), sinh(xm)))
self.assertTrue(eq(np.tan(x), tan(xm)))
self.assertTrue(eq(np.tanh(x), tanh(xm)))
with np.errstate(divide='ignore', invalid='ignore'):
self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm)))
self.assertTrue(eq(np.log(abs(x)), log(xm)))
self.assertTrue(eq(np.log10(abs(x)), log10(xm)))
self.assertTrue(eq(np.exp(x), exp(xm)))
self.assertTrue(eq(np.arcsin(z), arcsin(zm)))
self.assertTrue(eq(np.arccos(z), arccos(zm)))
self.assertTrue(eq(np.arctan(z), arctan(zm)))
self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym)))
self.assertTrue(eq(np.absolute(x), absolute(xm)))
self.assertTrue(eq(np.equal(x, y), equal(xm, ym)))
self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym)))
self.assertTrue(eq(np.less(x, y), less(xm, ym)))
self.assertTrue(eq(np.greater(x, y), greater(xm, ym)))
self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym)))
self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
self.assertTrue(eq(np.conjugate(x), conjugate(xm)))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y))))
self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y))))
self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x)))) ```

Example 50

```def test_testUfuncRegression(self):
f_invalid_ignore = [
'sqrt', 'arctanh', 'arcsin', 'arccos',
'arccosh', 'arctanh', 'log', 'log10', 'divide',
'true_divide', 'floor_divide', 'remainder', 'fmod']
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
'floor', 'ceil',
'logical_not',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor']:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(np.ma, f)
args = self.d[:uf.nin]
with np.errstate():
if f in f_invalid_ignore:
np.seterr(invalid='ignore')
if f in ['arctanh', 'log', 'log10']:
np.seterr(divide='ignore')
ur = uf(*args)
mr = mf(*args)
self.assertTrue(eq(ur.filled(0), mr.filled(0), f))