Python numpy.ptp() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def compute_group(cls, data, scales, **params):
        n = len(data)

        if n < 3:
            return pd.DataFrame()

        weight = data.get('weight')

        if params['trim']:
            range_y = data['y'].min(), data['y'].max()
        else:
            range_y = scales.y.dimension()

        dens = compute_density(data['y'], weight, range_y, **params)
        dens['y'] = dens['x']
        dens['x'] = np.mean([data['x'].min(), data['x'].max()])

        # Compute width if x has multiple values
        if len(np.unique(data['x'])) > 1:
            dens['width'] = np.ptp(data['x']) * 0.9

        return dens 

Example 2

def draw_group(data, panel_params, coord, ax, **params):
        data = coord.transform(data, panel_params)
        fill = to_rgba(data['fill'], data['alpha'])
        color = to_rgba(data['color'], data['alpha'])
        ranges = coord.range(panel_params)

        # For perfect circles the width/height of the circle(ellipse)
        # should factor in the dimensions of axes
        bbox = ax.get_window_extent().transformed(
            ax.figure.dpi_scale_trans.inverted())
        ax_width, ax_height = bbox.width, bbox.height

        factor = ((ax_width/ax_height) *
                  np.ptp(ranges.y)/np.ptp(ranges.x))
        size = data.loc[0, 'binwidth'] * params['dotsize']
        offsets = data['stackpos'] * params['stackratio']

        if params['binaxis'] == 'x':
            width, height = size, size*factor
            xpos, ypos = data['x'], data['y'] + height*offsets
        elif params['binaxis'] == 'y':
            width, height = size/factor, size
            xpos, ypos = data['x'] + width*offsets, data['y']

        circles = []
        for xy in zip(xpos, ypos):
            patch = mpatches.Ellipse(xy, width=width, height=height)
            circles.append(patch)

        coll = mcoll.PatchCollection(circles,
                                     edgecolors=color,
                                     facecolors=fill)
        ax.add_collection(coll) 

Example 3

def fit(self, X, y=None):
        """Fit it.

        Parameters
        ----------
        X : array, shape (n_epochs, n_times)
            The data for one channel.
        y : None
            Redundant. Necessary to be compatible with sklearn
            API.
        """
        deltas = np.ptp(X, axis=1)
        self.deltas_ = deltas
        keep = deltas <= self.thresh
        # XXX: actually go over all the folds before setting the min
        # in skopt. Otherwise, may confuse skopt.
        if self.thresh < np.min(np.ptp(X, axis=1)):
            assert np.sum(keep) == 0
            keep = deltas <= np.min(np.ptp(X, axis=1))
        self.mean_ = _slicemean(X, keep, axis=0)
        return self 

Example 4

def _vote_bad_epochs(self, epochs):
        """Each channel votes for an epoch as good or bad.

        Parameters
        ----------
        epochs : instance of mne.Epochs
            The epochs object for which bad epochs must be found.
        """
        n_epochs = len(epochs)
        picks = _handle_picks(info=epochs.info, picks=self.picks)

        drop_log = np.zeros((n_epochs, len(epochs.ch_names)))
        bad_sensor_counts = np.zeros((len(epochs), ))

        ch_names = [epochs.ch_names[p] for p in picks]
        deltas = np.ptp(epochs.get_data()[:, picks], axis=-1).T
        threshes = [self.threshes_[ch_name] for ch_name in ch_names]
        for ch_idx, (delta, thresh) in enumerate(zip(deltas, threshes)):
            bad_epochs_idx = np.where(delta > thresh)[0]
            # TODO: combine for different ch types
            bad_sensor_counts[bad_epochs_idx] += 1
            drop_log[bad_epochs_idx, picks[ch_idx]] = 1
        return drop_log, bad_sensor_counts 

Example 5

def extend_limits(values, fraction=0.10, tolerance=1e-2):
    """ Extend the values of a list by a fractional amount """

    values = np.array(values)
    finite_indices = np.isfinite(values)

    if np.sum(finite_indices) == 0:
        raise ValueError("no finite values provided")

    lower_limit, upper_limit = np.min(values[finite_indices]), np.max(values[finite_indices])
    ptp_value = np.ptp([lower_limit, upper_limit])

    new_limits = lower_limit - fraction * ptp_value, ptp_value * fraction + upper_limit

    if np.abs(new_limits[0] - new_limits[1]) < tolerance:
        if np.abs(new_limits[0]) < tolerance:
            # Arbitrary limits, since we"ve just been passed zeros
            offset = 1

        else:
            offset = np.abs(new_limits[0]) * fraction
            
        new_limits = new_limits[0] - offset, offset + new_limits[0]

    return np.array(new_limits) 

Example 6

def calculate_fractional_overlap(interest_range, comparison_range):
    """
    Calculate how much of the range of interest overlaps with the comparison
    range.
    """

    if not (interest_range[-1] >= comparison_range[0] \
        and comparison_range[-1] >= interest_range[0]):
        return 0.0 # No overlap

    elif   (interest_range[0] >= comparison_range[0] \
        and interest_range[-1] <= comparison_range[-1]):
        return 1.0 # Total overlap 

    else:
        # Some overlap. Which side?
        if interest_range[0] < comparison_range[0]:
            # Left hand side
            width = interest_range[-1] - comparison_range[0]

        else:
            # Right hand side
            width = comparison_range[-1] - interest_range[0]
        return width/np.ptp(interest_range) # Fractional overlap 

Example 7

def update_roi_xy_size(self):
        """ Update the cursor size showing the optimizer scan area for the XY image.
        """
        hpos = self.roi_xy.pos()[0]
        vpos = self.roi_xy.pos()[1]
        hsize = self.roi_xy.size()[0]
        vsize = self.roi_xy.size()[1]
        hcenter = hpos + 0.5 * hsize
        vcenter = vpos + 0.5 * vsize
        if self.adjust_cursor_roi:
            newsize = self._optimizer_logic.refocus_XY_size
        else:
            viewrange = self.xy_image.getViewBox().viewRange()
            newsize = np.sqrt(np.sum(np.ptp(viewrange, axis=1)**2)) / 20
        self.roi_xy.setSize([newsize, newsize])
        self.roi_xy.setPos([hcenter - newsize / 2, vcenter - newsize / 2]) 

Example 8

def update_roi_depth_size(self):
        """ Update the cursor size showing the optimizer scan area for the X-depth image.
        """
        hpos = self.roi_depth.pos()[0]
        vpos = self.roi_depth.pos()[1]
        hsize = self.roi_depth.size()[0]
        vsize = self.roi_depth.size()[1]
        hcenter = hpos + 0.5 * hsize
        vcenter = vpos + 0.5 * vsize

        if self.adjust_cursor_roi:
            newsize_h = self._optimizer_logic.refocus_XY_size
            newsize_v = self._optimizer_logic.refocus_Z_size
        else:
            viewrange = self.depth_image.getViewBox().viewRange()
            newsize = np.sqrt(np.sum(np.ptp(viewrange, axis=1)**2)) / 20
            newsize_h = newsize
            newsize_v = newsize

        self.roi_depth.setSize([newsize_h, newsize_v])
        self.roi_depth.setPos([hcenter - newsize_h / 2, vcenter - newsize_v / 2]) 

Example 9

def plane_fit(points, tolerance=None):
    '''                                   
    Given a set of points, find an origin and normal using least squares
    Arguments
    ---------
    points: (n,3)
    tolerance: how non-planar the result can be without raising an error
    
    Returns
    ---------
    C: (3) point on the plane
    N: (3) normal vector
    '''

    C = points[0]
    x = points - C
    M = np.dot(x.T, x)
    N = np.linalg.svd(M)[0][:,-1]

    if not (tolerance is None):
        normal_range  = np.ptp(np.dot(N, points.T))
        if normal_range > tol.planar:
            log.error('Points have peak to peak of %f', normal_range)
            raise ValueError('Plane outside tolerance!')
    return C, N 

Example 10

def plot_epipolar_line(p1, p2, F, show_epipole=False):
    """ Plot the epipole and epipolar line F*x=0
        in an image given the corresponding points.
        F is the fundamental matrix and p2 are the point in the other image.
    """
    lines = np.dot(F, p2)
    pad = np.ptp(p1, 1) * 0.01
    mins = np.min(p1, 1)
    maxes = np.max(p1, 1)

    # epipolar line parameter and values
    xpts = np.linspace(mins[0] - pad[0], maxes[0] + pad[0], 100)
    for line in lines.T:
        ypts = np.asarray([(line[2] + line[0] * p) / (-line[1]) for p in xpts])
        valid_idx = ((ypts >= mins[1] - pad[1]) & (ypts <= maxes[1] + pad[1]))
        plt.plot(xpts[valid_idx], ypts[valid_idx], linewidth=1)
        plt.plot(p1[0], p1[1], 'ro')

    if show_epipole:
        epipole = compute_epipole(F)
        plt.plot(epipole[0] / epipole[2], epipole[1] / epipole[2], 'r*') 

Example 11

def startModulation(self,
                        radiusInMilliRad,
                        frequencyInHz,
                        centerInMilliRad):
        self._origTargetPosition= centerInMilliRad
        self.stopModulation()

        periodInSec= 1./ frequencyInHz
        assert np.ptp(self._ctrl.getWaveGeneratorTableRate()) == 0, \
            "wave generator table rate must be the same for every table"
        wgtr= self._ctrl.getWaveGeneratorTableRate()[0]
        timestep= self._ctrl.getServoUpdateTimeInSeconds() * wgtr

        lengthInPoints= periodInSec/ timestep
        peakOfTheSineCurve= self._milliRadToGcsUnits(
            self.getTargetPosition() + radiusInMilliRad)
        offsetOfTheSineCurve= self._milliRadToGcsUnits(
            self.getTargetPosition() - radiusInMilliRad)
        amplitudeOfTheSineCurve= peakOfTheSineCurve - offsetOfTheSineCurve
        wavelengthOfTheSineCurveInPoints= periodInSec/ timestep
        startPoint= np.array([0, 0.25])* wavelengthOfTheSineCurveInPoints
        curveCenterPoint= 0.5* wavelengthOfTheSineCurveInPoints

        self._ctrl.clearWaveTableData([1, 2, 3])
        self._ctrl.setSinusoidalWaveform(
            1, WaveformGenerator.CLEAR, lengthInPoints,
            amplitudeOfTheSineCurve[0], offsetOfTheSineCurve[0],
            wavelengthOfTheSineCurveInPoints, startPoint[0], curveCenterPoint)
        self._ctrl.setSinusoidalWaveform(
            2, WaveformGenerator.CLEAR, lengthInPoints,
            amplitudeOfTheSineCurve[1], offsetOfTheSineCurve[1],
            wavelengthOfTheSineCurveInPoints, startPoint[1], curveCenterPoint)
        self._ctrl.setConnectionOfWaveTableToWaveGenerator([1, 2], [1, 2])
        self._ctrl.setWaveGeneratorStartStopMode([1, 1, 0])
        self._modulationEnabled= True 

Example 12

def compute_group(cls, data, scales, **params):
        labels = ['x', 'y']
        X = np.array(data[labels])
        res = boxplot_stats(X, whis=params['coef'], labels=labels)[1]
        try:
            n = data['weight'].sum()
        except KeyError:
            n = len(data['y'])

        if len(np.unique(data['x'])) > 1:
            width = np.ptp(data['x']) * 0.9
        else:
            width = params['width']

        if pdtypes.is_categorical(data['x']):
            x = data['x'].iloc[0]
        else:
            x = np.mean([data['x'].min(), data['x'].max()])

        d = {'ymin': res['whislo'],
             'lower': res['q1'],
             'middle': [res['med']],
             'upper': res['q3'],
             'ymax': res['whishi'],
             'outliers': [res['fliers']],
             'notchupper': res['med']+1.58*res['iqr']/np.sqrt(n),
             'notchlower': res['med']-1.58*res['iqr']/np.sqrt(n),
             'x': x,
             'width': width,
             'relvarwidth': np.sqrt(n)}
        return pd.DataFrame(d) 

Example 13

def test_ptp(self):
        a = [3, 4, 5, 10, -3, -5, 6.0]
        assert_equal(np.ptp(a, axis=0), 15.0) 

Example 14

def _phampcheck(self, pha, amp, axis):
        """Check phase and amplitude values."""
        # Shape checking :
        if pha.ndim != amp.ndim:
            raise ValueError("pha and amp must have the same number of "
                             "dimensions.")
        # Force phase / amplitude to be at least (1, N) :
        if (pha.ndim == 1) and (amp.ndim == 1):
            pha = pha.reshape(1, -1)
            amp = amp.reshape(1, -1)
            axis = 1
        # Check if the phase is in radians :
        if np.ptp(pha) > 2 * np.pi:
            raise ValueError("Your phase is probably in degrees and should be"
                             " converted in radians using either np.degrees or"
                             " np.deg2rad.")
        # Check if the phase/amplitude have the same number of points on axis:
        if pha.shape[axis] != amp.shape[axis]:
            phan, ampn = pha.shape[axis], amp.shape[axis]
            raise ValueError("The phase (" + str(phan) + ") and the amplitude "
                             "(" + str(ampn) + ") do not have the same number"
                             " of points on the specified axis (" +
                             str(axis) + ").")
        # Force the phase to be in [-pi, pi] :
        pha = (pha + np.pi) % (2 * np.pi) - np.pi
        return pha, amp, axis

    ###########################################################################
    #                              PROPERTIES
    ###########################################################################
    # ----------- IDPAC ----------- 

Example 15

def _postprocess_contours(self, index, times, freqs, salience):
        """Remove contours that are too short.

        Parameters
        ----------
        index : np.array
            array of contour numbers
        times : np.array
            array of contour times
        freqs : np.array
            array of contour frequencies
        salience : np.array
            array of contour salience values

        Returns
        -------
        index_pruned : np.array
            Pruned array of contour numbers
        times_pruned : np.array
            Pruned array of contour times
        freqs_pruned : np.array
            Pruned array of contour frequencies
        salience_pruned : np.array
            Pruned array of contour salience values

        """
        keep_index = np.ones(times.shape).astype(bool)
        for i in set(index):
            this_idx = (index == i)
            if np.ptp(times[this_idx]) <= self.min_contour_len:
                keep_index[this_idx] = False

        return (index[keep_index], times[keep_index],
                freqs[keep_index], salience[keep_index]) 

Example 16

def test_ptp(self):
        a = [3, 4, 5, 10, -3, -5, 6.0]
        assert_equal(np.ptp(a, axis=0), 15.0) 

Example 17

def fit(self, X, y=None):
        """Fit it."""
        if self.n_channels is None or self.n_times is None:
            raise ValueError('Cannot fit without knowing n_channels'
                             ' and n_times')
        X = X.reshape(-1, self.n_channels, self.n_times)
        deltas = np.array([np.ptp(d, axis=1) for d in X])
        epoch_deltas = deltas.max(axis=1)
        keep = epoch_deltas <= self.thresh
        self.mean_ = _slicemean(X, keep, axis=0)
        return self 

Example 18

def _get_epochs_interpolation(self, epochs, drop_log,
                                  ch_type, verbose='progressbar'):
        """Interpolate the bad epochs."""
        # 1: bad segment, # 2: interpolated
        fix_log = drop_log.copy()
        ch_names = epochs.ch_names
        non_picks = np.setdiff1d(range(epochs.info['nchan']), self.picks)
        interp_channels = list()
        n_interpolate = self.n_interpolate[ch_type]
        for epoch_idx in range(len(epochs)):
            n_bads = drop_log[epoch_idx, self.picks].sum()
            if n_bads == 0:
                continue
            else:
                if n_bads <= n_interpolate:
                    interp_chs_mask = drop_log[epoch_idx] == 1
                else:
                    # get peak-to-peak for channels in that epoch
                    data = epochs[epoch_idx].get_data()[0]
                    peaks = np.ptp(data, axis=-1)
                    peaks[non_picks] = -np.inf
                    # find channels which are bad by rejection threshold
                    interp_chs_mask = drop_log[epoch_idx] == 1
                    # ignore good channels
                    peaks[~interp_chs_mask] = -np.inf
                    # find the ordering of channels amongst the bad channels
                    sorted_ch_idx_picks = np.argsort(peaks)[::-1]
                    # then select only the worst n_interpolate channels
                    interp_chs_mask[
                        sorted_ch_idx_picks[n_interpolate:]] = False

            fix_log[epoch_idx][interp_chs_mask] = 2
            interp_chs = np.where(interp_chs_mask)[0]
            interp_chs = [ch_name for idx, ch_name in enumerate(ch_names)
                          if idx in interp_chs]
            interp_channels.append(interp_chs)
        return interp_channels, fix_log 

Example 19

def normalizeData(X):
    mean = []
    data_range = []
    mean.append(np.mean(X[:,1]))
    mean.append(np.mean(X[:,2]))
    data_range = np.ptp(X,axis=0)[-2:]
    #print(mean,data_range)
    for i in range(len(X)):
        X[:,1][i]  = (X[:,1][i] - float(mean[0]))/float(data_range[0])
        X[:,2][i] = (X[:,2][i] - float(mean[1]))/float(data_range[1])

    return X 

Example 20

def normalizeData(X):
    mean = []
    data_range = []
    mean.append(np.mean(X[:,1]))
    mean.append(np.mean(X[:,2]))
    data_range = np.ptp(X,axis=0)[-2:]
    #print(mean,data_range)
    for i in range(len(X)):
        X[:,1][i]  = (X[:,1][i] - float(mean[0]))/float(data_range[0])
        X[:,2][i] = (X[:,2][i] - float(mean[1]))/float(data_range[1])

    return X 

Example 21

def FeatureScaling(X):
    mean = []
    data_range = []
    X1 = np.zeros((len(X),X.shape[1]))
    mean.append(np.mean(X[:,1]))
    mean.append(np.mean(X[:,2]))
    data_range = np.ptp(X,axis=0)[-2:]
    #print(mean)
    print(data_range)
    for i in range(len(X)):
        X1[:,0][i] = (X[:,0][i] - mean[0])/data_range[0]
        X1[:,1][i] = (X[:,1][i] - mean[1])/data_range[1]
    return X1 

Example 22

def neighbours(self, effective_temperature, surface_gravity, metallicity, N,
        scales=None):
        """
        Return indices of the `N`th-nearest neighbours in the grid. The three
        parameters are scaled by the peak-to-peak range in the grid, unless
        `scales` are indicates.

        :param effective_temperature:
            The effective temperature of the star.

        :param surface_gravity:
            The surface gravity of the star.

        :param metallicity:
            The metallicity of the star.

        :param N:
            The number of neighbouring indices to return.

        :returns:
            An array of length `N` that contains the indices of the closest
            neighbours in the grid.
        """

        point = np.array([effective_temperature, surface_gravity, metallicity])
        if scales is None:
            scales = np.ptp(self._grid, axis=0)

        distance = np.sum(((self._grid - point)/scales)**2, axis=1)

        return np.argsort(distance)[:N] 

Example 23

def nearest_neighbours(self, point, n):
        """
        Return the indices of the n nearest neighbours to the point.
        """

        stellar_parameters = _recarray_to_array(self.stellar_parameters)
        distances = np.sum(((point - stellar_parameters) \
            / np.ptp(stellar_parameters, axis=0))**2, axis=1)
        return distances.argsort()[:n] 

Example 24

def figure_mouse_pick(self, event):
        """
        Trigger for when the mouse is used to select an item in the figure.

        :param event:
            The matplotlib event.
        """
        
        ycol = "abundance"
        xcol = {
            self.ax_excitation_twin: "expot",
            self.ax_line_strength_twin: "reduced_equivalent_width"
        }[event.inaxes]

        xscale = np.ptp(event.inaxes.get_xlim())
        yscale = np.ptp(event.inaxes.get_ylim())
        try:
            distance = np.sqrt(
                    ((self._state_transitions[ycol] - event.ydata)/yscale)**2 \
                +   ((self._state_transitions[xcol] - event.xdata)/xscale)**2)
        except AttributeError:
            # Stellar parameters have not been measured yet
            return None

        index = np.nanargmin(distance)

        # Because the state transitions are linked to the parent source model of
        # the table view, we will have to get the proxy index.
        proxy_index = self.table_view.model().mapFromSource(
            self.proxy_spectral_models.sourceModel().createIndex(index, 0)).row()

        self.table_view.selectRow(proxy_index)
        return None 

Example 25

def normalize(vec):
    """
    Given an input vector normalize the vector

    Parameters
    ==========
    vec : array_like
        input vector to normalize

    Returns
    =======
    out : array_like
        normalized vector

    Examples
    ========
    >>> import spacepy.toolbox as tb
    >>> tb.normalize([1,2,3])
    [0.0, 0.5, 1.0]
    """
    # check to see if vec is numpy array, this is fastest
    if isinstance(vec, np.ndarray):
        out = (vec - vec.min())/np.ptp(vec)
    else:
        vecmin = np.min(vec)
        ptp = np.ptp(vec)
        out = [(val -  vecmin)/ptp for val in vec]
    return out 

Example 26

def test_ptp(self):
        N = 1000
        arr = np.random.randn(N)
        ser = Series(arr)
        self.assertEqual(np.ptp(ser), np.ptp(arr))

        # GH11163
        s = Series([3, 5, np.nan, -3, 10])
        self.assertEqual(s.ptp(), 13)
        self.assertTrue(pd.isnull(s.ptp(skipna=False)))

        mi = pd.MultiIndex.from_product([['a', 'b'], [1, 2, 3]])
        s = pd.Series([1, np.nan, 7, 3, 5, np.nan], index=mi)

        expected = pd.Series([6, 2], index=['a', 'b'], dtype=np.float64)
        self.assert_series_equal(s.ptp(level=0), expected)

        expected = pd.Series([np.nan, np.nan], index=['a', 'b'])
        self.assert_series_equal(s.ptp(level=0, skipna=False), expected)

        with self.assertRaises(ValueError):
            s.ptp(axis=1)

        s = pd.Series(['a', 'b', 'c', 'd', 'e'])
        with self.assertRaises(TypeError):
            s.ptp()

        with self.assertRaises(NotImplementedError):
            s.ptp(numeric_only=True) 

Example 27

def _get_indice(cls, w, flux, blue, red, band=None, unit='ew', degree=1,
                    **kwargs):
        """ compute spectral index after continuum subtraction

        Parameters
        ----------
        w: ndarray (nw, )
            array of wavelengths in AA
        flux: ndarray (N, nw)
            array of flux values for different spectra in the series
        blue: tuple(2)
            selection for blue continuum estimate
        red: tuple(2)
            selection for red continuum estimate
        band: tuple(2), optional
            select region in this band only.
            default is band = (min(blue), max(red))
        unit: str
            `ew` or `mag` wether equivalent width or magnitude
        degree: int (default 1)
            degree of the polynomial fit to the continuum

        Returns
        -------
        ew: ndarray (N,)
            equivalent width array
        """
        wi, fi = cls.continuum_normalized_region_around_line(w, flux, blue,
                                                             red, band=band,
                                                             degree=degree)
        if unit in (0, 'ew', 'EW'):
            return np.trapz(1. - fi, wi, axis=-1)
        else:
            m = np.trapz(fi, wi, axis=-1)
            m = -2.5 * np.log10(m / np.ptp(wi))
            return m 

Example 28

def test_basic(self):
        a = [3, 4, 5, 10, -3, -5, 6.0]
        assert_equal(np.ptp(a, axis=0), 15.0)
        b = [[3, 6.0, 9.0],
             [4, 10.0, 5.0],
             [8, 3.0, 2.0]]
        assert_equal(np.ptp(b, axis=0), [5.0, 7.0, 7.0])
        assert_equal(np.ptp(b, axis=-1), [6.0, 6.0, 6.0]) 

Example 29

def plot_cdf(x, copy=True, fractional=True, **kwargs):
    """
    Add a log-log CCDF plot to the current axes.

    Arguments
    ---------
    x : array_like
        The data to plot

    copy : boolean
        copy input array in a new object before sorting it. If data is a *very*
        large, the copy can avoided by passing False to this parameter.

    fractional : boolean
        compress the data by means of fractional ranking. This collapses the
        ranks from multiple, identical observations into their midpoint, thus
        producing smaller figures. Note that the resulting plot will NOT be the
        exact CCDF function, but an approximation.

    Additional keyword arguments are passed to `matplotlib.pyplot.loglog`.
    Returns a matplotlib axes object.

    """
    N = float(len(x))
    if copy:
        x = x.copy()
    x.sort()
    if fractional:
        t = []
        for x, chunk in groupby(enumerate(x, 1), itemgetter(1)):
            xranks, _ = zip(*list(chunk))
            t.append((float(x), xranks[0] + np.ptp(xranks) / 2.0))
        t = np.asarray(t)
    else:
        t = np.c_[np.asfarray(x), np.arange(N) + 1]
    if 'ax' not in kwargs:
        ax = plt.gca()
    else:
        ax = kwargs.pop('ax')
    ax.loglog(t[:, 0], (N - t[:, 1]) / N, 'ow', **kwargs)
    return ax 

Example 30

def test_integrate():
    subslice = slice(100,200)
    wvln = np.linspace(1000., 4000., 1024)

    flux = np.zeros_like(wvln)
    flux[subslice] = 1./np.ptp(wvln[subslice]) # so the integral is 1

    s = Spectrum(wvln*u.angstrom, flux*u.erg/u.cm**2/u.angstrom)

    # the integration grid is a sub-section of the full wavelength array
    wvln_grid = s.wavelength[subslice]
    i_flux = s.integrate(wvln_grid)
    assert np.allclose(i_flux.value, 1.) # "close" because this is float comparison 

Example 31

def is_circle(points, scale, verbose=True):
    '''
    Given a set of points, quickly determine if they represent
    a circle or not. 
    '''

    # make sure input is a numpy array
    points = np.asanyarray(points)
    scale = float(scale)

    # can only be a circle if the first and last point are the 
    # same (AKA is a closed path)
    if np.linalg.norm(points[0] - points[-1]) > tol.merge:
        return None

    box = points.ptp(axis=0)
    # the bounding box size of the points
    # check aspect ratio as an early exit if the path is not a circle
    aspect = np.divide(*box)
    if np.abs(aspect - 1.0) > tol.aspect_frac: 
        return None

    # fit a circle with tolerance checks
    CR = fit_circle_check(points, scale=scale)
    if CR is None: 
        return None

    # return the circle as three control points
    control = angles_to_threepoint([0,np.pi*.5], *CR)
    return control 

Example 32

def test_ptp(self):
        a = [3, 4, 5, 10, -3, -5, 6.0]
        assert_equal(np.ptp(a, axis=0), 15.0) 

Example 33

def print_confidence_interval(ci, tabs=''):
    """Pretty print confidence interval information"""
    ci = list(ci)
    ci += [np.ptp(ci)]

    print(tabs + 'Value: {1:.04f}'.format(*ci))
    print(tabs + '95% Confidence Interval: ({0:.04f}, {2:.04f})'.format(*ci))
    print(tabs + '\tCI Width: {3:.05f}'.format(*ci)) 

Example 34

def test_ptp(self):
        a = [3, 4, 5, 10, -3, -5, 6.0]
        assert_equal(np.ptp(a, axis=0), 15.0) 

Example 35

def ptp(a, axis=None, out=None):
    """
    Range of values (maximum - minimum) along an axis.

    The name of the function comes from the acronym for 'peak to peak'.

    Parameters
    ----------
    a : array_like
        Input values.
    axis : int, optional
        Axis along which to find the peaks.  By default, flatten the
        array.
    out : array_like
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type of the output values will be cast if necessary.

    Returns
    -------
    ptp : ndarray
        A new array holding the result, unless `out` was
        specified, in which case a reference to `out` is returned.

    Examples
    --------
    >>> x = np.arange(4).reshape((2,2))
    >>> x
    array([[0, 1],
           [2, 3]])

    >>> np.ptp(x, axis=0)
    array([2, 2])

    >>> np.ptp(x, axis=1)
    array([1, 1])

    """
    return _wrapfunc(a, 'ptp', axis=axis, out=out) 

Example 36

def test_scalar(self):
        """
        Should return 0 for all scalar
        """
        x = scalar('x')
        p = ptp(x)
        f = theano.function([x], p)

        y = numpy.asarray(rand() * 2000 - 1000, dtype=config.floatX)
        result = f(y)
        numpyResult = numpy.ptp(y)

        self.assertTrue(numpy.array_equal(result, numpyResult)) 

Example 37

def test_vector(self):

        x = vector('x')
        p = ptp(x, 0)
        f = theano.function([x], p)

        y = rand_ranged(-1000, 1000, [100])
        result = f(y)
        numpyResult = numpy.ptp(y, 0)

        self.assertTrue(numpy.array_equal(result, numpyResult)) 

Example 38

def test_matrix_first_axis(self):

        x = matrix('x')
        p = ptp(x, 1)
        f = theano.function([x], p)

        y = rand_ranged(-1000, 1000, [100, 100])
        result = f(y)
        numpyResult = numpy.ptp(y, 1)

        self.assertTrue(numpy.array_equal(result, numpyResult)) 

Example 39

def test_matrix_second_axis(self):
        x = matrix('x')
        p = ptp(x, 0)
        f = theano.function([x], p)

        y = rand_ranged(-1000, 1000, [100, 100])
        result = f(y)
        numpyResult = numpy.ptp(y, 0)

        self.assertTrue(numpy.array_equal(result, numpyResult)) 

Example 40

def test_matrix_neg_axis(self):
        x = matrix('x')
        p = ptp(x, -1)
        f = theano.function([x], p)

        y = rand_ranged(-1000, 1000, [100, 100])
        result = f(y)
        numpyResult = numpy.ptp(y, -1)

        self.assertTrue(numpy.array_equal(result, numpyResult)) 

Example 41

def test_interface(self):
        x = matrix('x')
        p = x.ptp(1)
        f = theano.function([x], p)

        y = rand_ranged(-1000, 1000, [100, 100])
        result = f(y)
        numpyResult = numpy.ptp(y, 1)

        self.assertTrue(numpy.array_equal(result, numpyResult)) 

Example 42

def has_constant(x):
    """
    Parameters
    ----------
    x: ndarray
        Array to be checked for a constant (n,k)

    Returns
    -------
    const : bool
        Flag indicating whether x contains a constant or has column span with
        a constant
    loc : int
        Column location of constant
    """
    if np.any(np.all(x == 1, axis=0)):
        loc = np.argwhere(np.all(x == 1, axis=0))
        return True, int(loc)

    if np.any((np.ptp(x, axis=0) == 0) & ~np.all(x == 0, axis=0)):
        loc = np.any((np.ptp(x, axis=0) == 0) & ~np.all(x == 0, axis=0))
        loc = np.argwhere(loc)
        return True, int(loc)

    n = x.shape[0]
    aug_rank = matrix_rank(np.c_[np.ones((n, 1)), x])
    rank = matrix_rank(x)
    has_const = bool(aug_rank == rank)
    loc = None
    if has_const:
        out = np.linalg.lstsq(x, np.ones((n, 1)))
        beta = out[0].ravel()
        loc = np.argmax(np.abs(beta) * x.var(0))
    return has_const, loc 

Example 43

def test_ids(panel):
    data = PanelData(panel)
    eids = data.entity_ids
    assert eids.shape == (77, 1)
    assert len(np.unique(eids)) == 11
    for i in range(0, len(eids), 7):
        assert np.ptp(eids[i:i + 7]) == 0
        assert np.all((eids[i + 8:] - eids[i]) != 0)

    tids = data.time_ids
    assert tids.shape == (77, 1)
    assert len(np.unique(tids)) == 7
    for i in range(0, 11):
        assert np.ptp(tids[i::7]) == 0 

Example 44

def test_neighbors_accuracy_with_n_candidates():
    # Checks whether accuracy increases as `n_candidates` increases.
    n_candidates_values = np.array([.1, 50, 500])
    n_samples = 100
    n_features = 10
    n_iter = 10
    n_points = 5
    rng = np.random.RandomState(42)
    accuracies = np.zeros(n_candidates_values.shape[0], dtype=float)
    X = rng.rand(n_samples, n_features)

    for i, n_candidates in enumerate(n_candidates_values):
        lshf = LSHForest(n_candidates=n_candidates)
        ignore_warnings(lshf.fit)(X)
        for j in range(n_iter):
            query = X[rng.randint(0, n_samples)].reshape(1, -1)

            neighbors = lshf.kneighbors(query, n_neighbors=n_points,
                                        return_distance=False)
            distances = pairwise_distances(query, X, metric='cosine')
            ranks = np.argsort(distances)[0, :n_points]

            intersection = np.intersect1d(ranks, neighbors).shape[0]
            ratio = intersection / float(n_points)
            accuracies[i] = accuracies[i] + ratio

        accuracies[i] = accuracies[i] / float(n_iter)
    # Sorted accuracies should be equal to original accuracies
    assert_true(np.all(np.diff(accuracies) >= 0),
                msg="Accuracies are not non-decreasing.")
    # Highest accuracy should be strictly greater than the lowest
    assert_true(np.ptp(accuracies) > 0,
                msg="Highest accuracy is not strictly greater than lowest.") 

Example 45

def test_neighbors_accuracy_with_n_estimators():
    # Checks whether accuracy increases as `n_estimators` increases.
    n_estimators = np.array([1, 10, 100])
    n_samples = 100
    n_features = 10
    n_iter = 10
    n_points = 5
    rng = np.random.RandomState(42)
    accuracies = np.zeros(n_estimators.shape[0], dtype=float)
    X = rng.rand(n_samples, n_features)

    for i, t in enumerate(n_estimators):
        lshf = LSHForest(n_candidates=500, n_estimators=t)
        ignore_warnings(lshf.fit)(X)
        for j in range(n_iter):
            query = X[rng.randint(0, n_samples)].reshape(1, -1)
            neighbors = lshf.kneighbors(query, n_neighbors=n_points,
                                        return_distance=False)
            distances = pairwise_distances(query, X, metric='cosine')
            ranks = np.argsort(distances)[0, :n_points]

            intersection = np.intersect1d(ranks, neighbors).shape[0]
            ratio = intersection / float(n_points)
            accuracies[i] = accuracies[i] + ratio

        accuracies[i] = accuracies[i] / float(n_iter)
    # Sorted accuracies should be equal to original accuracies
    assert_true(np.all(np.diff(accuracies) >= 0),
                msg="Accuracies are not non-decreasing.")
    # Highest accuracy should be strictly greater than the lowest
    assert_true(np.ptp(accuracies) > 0,
                msg="Highest accuracy is not strictly greater than lowest.") 

Example 46

def test_ptp(self):
        a = [3, 4, 5, 10, -3, -5, 6.0]
        assert_equal(np.ptp(a, axis=0), 15.0) 

Example 47

def ptp(a, axis=None, out=None):
    """
    Range of values (maximum - minimum) along an axis.

    The name of the function comes from the acronym for 'peak to peak'.

    Parameters
    ----------
    a : array_like
        Input values.
    axis : int, optional
        Axis along which to find the peaks.  By default, flatten the
        array.
    out : array_like
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type of the output values will be cast if necessary.

    Returns
    -------
    ptp : ndarray
        A new array holding the result, unless `out` was
        specified, in which case a reference to `out` is returned.

    Examples
    --------
    >>> x = np.arange(4).reshape((2,2))
    >>> x
    array([[0, 1],
           [2, 3]])

    >>> np.ptp(x, axis=0)
    array([2, 2])

    >>> np.ptp(x, axis=1)
    array([1, 1])

    """
    try:
        ptp = a.ptp
    except AttributeError:
        return _wrapit(a, 'ptp', axis, out)
    return ptp(axis, out) 

Example 48

def ptp(a, axis=None, out=None):
    """
    Range of values (maximum - minimum) along an axis.

    The name of the function comes from the acronym for 'peak to peak'.

    Parameters
    ----------
    a : array_like
        Input values.
    axis : int, optional
        Axis along which to find the peaks.  By default, flatten the
        array.
    out : array_like
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type of the output values will be cast if necessary.

    Returns
    -------
    ptp : ndarray
        A new array holding the result, unless `out` was
        specified, in which case a reference to `out` is returned.

    Examples
    --------
    >>> x = np.arange(4).reshape((2,2))
    >>> x
    array([[0, 1],
           [2, 3]])

    >>> np.ptp(x, axis=0)
    array([2, 2])

    >>> np.ptp(x, axis=1)
    array([1, 1])

    """
    try:
        ptp = a.ptp
    except AttributeError:
        return _wrapit(a, 'ptp', axis, out)
    return ptp(axis, out) 

Example 49

def _plot_histogram(params):
    """Function for plotting histogram of peak-to-peak values."""
    import matplotlib.pyplot as plt
    epochs = params['epochs']
    p2p = np.ptp(epochs.get_data(), axis=2)
    types = list()
    data = list()
    if 'eeg' in params['types']:
        eegs = np.array([p2p.T[i] for i,
                         x in enumerate(params['types']) if x == 'eeg'])
        data.append(eegs.ravel())
        types.append('eeg')
    if 'mag' in params['types']:
        mags = np.array([p2p.T[i] for i,
                         x in enumerate(params['types']) if x == 'mag'])
        data.append(mags.ravel())
        types.append('mag')
    if 'grad' in params['types']:
        grads = np.array([p2p.T[i] for i,
                          x in enumerate(params['types']) if x == 'grad'])
        data.append(grads.ravel())
        types.append('grad')
    params['histogram'] = plt.figure()
    scalings = _handle_default('scalings')
    units = _handle_default('units')
    titles = _handle_default('titles')
    colors = _handle_default('color')
    for idx in range(len(types)):
        ax = plt.subplot(len(types), 1, idx + 1)
        plt.xlabel(units[types[idx]])
        plt.ylabel('count')
        color = colors[types[idx]]
        rej = None
        if epochs.reject is not None and types[idx] in epochs.reject.keys():
                rej = epochs.reject[types[idx]] * scalings[types[idx]]
                rng = [0., rej * 1.1]
        else:
            rng = None
        plt.hist(data[idx] * scalings[types[idx]], bins=100, color=color,
                 range=rng)
        if rej is not None:
            ax.plot((rej, rej), (0, ax.get_ylim()[1]), color='r')
        plt.title(titles[types[idx]])
    params['histogram'].suptitle('Peak-to-peak histogram', y=0.99)
    params['histogram'].subplots_adjust(hspace=0.6)
    try:
        params['histogram'].show(warn=False)
    except Exception:
        pass
    if params['fig_proj'] is not None:
        params['fig_proj'].canvas.draw() 

Example 50

def relim_axes(axes, percent=20):
    """
    Generate new axes for a matplotlib axes based on the collections present.

    :param axes:
        The matplotlib axes.

    :param percent: [optional]
        The percent of the data to extend past the minimum and maximum data
        points.

    :returns:
        A two-length tuple containing the lower and upper limits in the x- and
        y-axis, respectively.
    """

    data = np.vstack([item.get_offsets() for item in axes.collections \
        if isinstance(item, PathCollection)])

    if data.size == 0:
        return (None, None)
    
    data = data.reshape(-1, 2)
    x, y = data[:,0], data[:, 1]

    # Only use finite values.
    finite = np.isfinite(x*y)
    x, y = x[finite], y[finite]

    if x.size > 1:
        xlim = [
            np.min(x) - np.ptp(x) * percent/100.,
            np.max(x) + np.ptp(x) * percent/100.,
        ]

    elif x.size == 0:
        xlim = None

    else:
        xlim = (x[0] - 1, x[0] + 1)


    if y.size > 1:
        ylim = [
            np.min(y) - np.ptp(y) * percent/100.,
            np.max(y) + np.ptp(y) * percent/100.
        ]

    elif y.size == 0: 
        ylim = None

    else:
        ylim = (y[0] - 1, y[0] + 1)

    axes.set_xlim(xlim)
    axes.set_ylim(ylim)

    return (xlim, ylim) 
点赞