The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def __add__(self, other): assert isinstance(other, ShapeFunction), "Can only add other shape function" assert self.name == other.name, "Cannot add shapes of different features" new_splits = self.splits.copy() new_vals = self.values.copy() for split, val in zip(other.splits, other.values): idx = np.searchsorted(new_splits, split, side='right') new_val = val if split in new_splits: idx_2 = np.argwhere(new_splits == split) new_vals[idx_2] = new_vals[idx_2] + new_val elif idx == len(new_splits) and (~np.isposinf(split)): new_splits = np.append(new_splits, split) new_vals = np.append(new_vals, new_val) elif np.isposinf(split): new_vals[-1] = new_vals[-1] + new_val else: new_splits = np.insert(new_splits, idx, split) new_vals = np.insert(new_vals, idx, new_val) return ShapeFunction(new_splits, new_vals, self.name)
Example 2
def get_mask_invalid(matrix): mask = np.isposinf(matrix) + np.isneginf(matrix) + np.isnan(matrix) return mask
Example 3
def set_logp_to_neg_inf(X, logp, bounds): """Set `logp` to negative infinity when `X` is outside the allowed bounds. # Arguments X: tensorflow.Tensor The variable to apply the bounds to logp: tensorflow.Tensor The log probability corrosponding to `X` bounds: list of `Region` objects The regions corrosponding to allowed regions of `X` # Returns logp: tensorflow.Tensor The newly bounded log probability """ conditions = [] for l, u in bounds: lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l) upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u) if not lower_is_neg_inf and upper_is_pos_inf: conditions.append(tf.greater(X, l)) elif lower_is_neg_inf and not upper_is_pos_inf: conditions.append(tf.less(X, u)) elif not (lower_is_neg_inf or upper_is_pos_inf): conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u))) if len(conditions) > 0: is_inside_bounds = conditions[0] for condition in conditions[1:]: is_inside_bounds = tf.logical_or(is_inside_bounds, condition) logp = tf.select( is_inside_bounds, logp, tf.fill(tf.shape(X), config.dtype(-np.inf)) ) return logp
Example 4
def _numpy(self, data, weights, shape): q = self.quantity(data) self._checkNPQuantity(q, shape) self._checkNPWeights(weights, shape) weights = self._makeNPWeights(weights, shape) newentries = weights.sum() import numpy selection = numpy.isnan(q) numpy.bitwise_not(selection, selection) subweights = weights.copy() subweights[selection] = 0.0 self.nanflow._numpy(data, subweights, shape) # switch to float here like in bin.py else numpy throws # TypeError on trivial integer cases such as: # >>> q = numpy.array([1,2,3,4]) # >>> np.divide(q,1,q) # >>> np.floor(q,q) q = numpy.array(q, dtype=numpy.float64) neginfs = numpy.isneginf(q) posinfs = numpy.isposinf(q) numpy.subtract(q, self.origin, q) numpy.divide(q, self.binWidth, q) numpy.floor(q, q) q = numpy.array(q, dtype=numpy.int64) q[neginfs] = LONG_MINUSINF q[posinfs] = LONG_PLUSINF selected = q[weights > 0.0] selection = numpy.empty(q.shape, dtype=numpy.bool) for index in numpy.unique(selected): if index != LONG_NAN: bin = self.bins.get(index) if bin is None: bin = self.value.zero() self.bins[index] = bin numpy.not_equal(q, index, selection) subweights[:] = weights subweights[selection] = 0.0 bin._numpy(data, subweights, shape) # no possibility of exception from here on out (for rollback) self.entries += float(newentries)