Python numpy.isposinf() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def __add__(self, other):

        assert isinstance(other, ShapeFunction), "Can only add other shape function"

        assert self.name == other.name, "Cannot add shapes of different features"

        new_splits = self.splits.copy()
        new_vals = self.values.copy()

        for split, val in zip(other.splits, other.values):
            idx = np.searchsorted(new_splits, split, side='right')
            new_val = val
            if split in new_splits:
                idx_2 = np.argwhere(new_splits == split)
                new_vals[idx_2] = new_vals[idx_2] + new_val
            elif idx == len(new_splits) and (~np.isposinf(split)):
                new_splits = np.append(new_splits, split)
                new_vals = np.append(new_vals, new_val)
            elif np.isposinf(split):
                new_vals[-1] = new_vals[-1] + new_val
            else:
                new_splits = np.insert(new_splits, idx, split)
                new_vals = np.insert(new_vals, idx, new_val)

        return ShapeFunction(new_splits, new_vals, self.name) 

Example 2

def get_mask_invalid(matrix):
    mask = np.isposinf(matrix) + np.isneginf(matrix) + np.isnan(matrix)
    return mask 

Example 3

def set_logp_to_neg_inf(X, logp, bounds):
    """Set `logp` to negative infinity when `X` is outside the allowed bounds.

    # Arguments
        X: tensorflow.Tensor
            The variable to apply the bounds to
        logp: tensorflow.Tensor
            The log probability corrosponding to `X`
        bounds: list of `Region` objects
            The regions corrosponding to allowed regions of `X`

    # Returns
        logp: tensorflow.Tensor
            The newly bounded log probability
    """
    conditions = []
    for l, u in bounds:
        lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l)
        upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u)

        if not lower_is_neg_inf and upper_is_pos_inf:
            conditions.append(tf.greater(X, l))
        elif lower_is_neg_inf and not upper_is_pos_inf:
            conditions.append(tf.less(X, u))
        elif not (lower_is_neg_inf or upper_is_pos_inf):
            conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u)))

    if len(conditions) > 0:
        is_inside_bounds = conditions[0]
        for condition in conditions[1:]:
            is_inside_bounds = tf.logical_or(is_inside_bounds, condition)

        logp = tf.select(
            is_inside_bounds,
            logp,
            tf.fill(tf.shape(X), config.dtype(-np.inf))
        )

    return logp 

Example 4

def _numpy(self, data, weights, shape):
        q = self.quantity(data)
        self._checkNPQuantity(q, shape)
        self._checkNPWeights(weights, shape)
        weights = self._makeNPWeights(weights, shape)
        newentries = weights.sum()

        import numpy

        selection = numpy.isnan(q)
        numpy.bitwise_not(selection, selection)
        subweights = weights.copy()
        subweights[selection] = 0.0
        self.nanflow._numpy(data, subweights, shape)

        # switch to float here like in bin.py else numpy throws
        # TypeError on trivial integer cases such as:
        # >>> q = numpy.array([1,2,3,4])
        # >>> np.divide(q,1,q)
        # >>> np.floor(q,q)
        q = numpy.array(q, dtype=numpy.float64)
        neginfs = numpy.isneginf(q)
        posinfs = numpy.isposinf(q)

        numpy.subtract(q, self.origin, q)
        numpy.divide(q, self.binWidth, q)
        numpy.floor(q, q)
        q = numpy.array(q, dtype=numpy.int64)
        q[neginfs] = LONG_MINUSINF
        q[posinfs] = LONG_PLUSINF

        selected = q[weights > 0.0]

        selection = numpy.empty(q.shape, dtype=numpy.bool)
        for index in numpy.unique(selected):
            if index != LONG_NAN:
                bin = self.bins.get(index)
                if bin is None:
                    bin = self.value.zero()
                    self.bins[index] = bin

                numpy.not_equal(q, index, selection)
                subweights[:] = weights
                subweights[selection] = 0.0
                bin._numpy(data, subweights, shape)

        # no possibility of exception from here on out (for rollback)
        self.entries += float(newentries) 
点赞