The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def test_irr(self): v = [-150000, 15000, 25000, 35000, 45000, 60000] assert_almost_equal(np.irr(v), 0.0524, 2) v = [-100, 0, 0, 74] assert_almost_equal(np.irr(v), -0.0955, 2) v = [-100, 39, 59, 55, 20] assert_almost_equal(np.irr(v), 0.28095, 2) v = [-100, 100, 0, -7] assert_almost_equal(np.irr(v), -0.0833, 2) v = [-100, 100, 0, 7] assert_almost_equal(np.irr(v), 0.06206, 2) v = [-5, 10.5, 1, -8, 1] assert_almost_equal(np.irr(v), 0.0886, 2) # Test that if there is no solution then np.irr returns nan # Fixes gh-6744 v = [-1, -2, -3] assert_equal(np.irr(v), np.nan)
Example 2
def test_irr(self): v = [-150000, 15000, 25000, 35000, 45000, 60000] assert_almost_equal(np.irr(v), 0.0524, 2) v = [-100, 0, 0, 74] assert_almost_equal(np.irr(v), -0.0955, 2) v = [-100, 39, 59, 55, 20] assert_almost_equal(np.irr(v), 0.28095, 2) v = [-100, 100, 0, -7] assert_almost_equal(np.irr(v), -0.0833, 2) v = [-100, 100, 0, 7] assert_almost_equal(np.irr(v), 0.06206, 2) v = [-5, 10.5, 1, -8, 1] assert_almost_equal(np.irr(v), 0.0886, 2)
Example 3
def test_irr(self): v = [-150000, 15000, 25000, 35000, 45000, 60000] assert_almost_equal(np.irr(v), 0.0524, 2) v = [-100, 0, 0, 74] assert_almost_equal(np.irr(v), -0.0955, 2) v = [-100, 39, 59, 55, 20] assert_almost_equal(np.irr(v), 0.28095, 2) v = [-100, 100, 0, -7] assert_almost_equal(np.irr(v), -0.0833, 2) v = [-100, 100, 0, 7] assert_almost_equal(np.irr(v), 0.06206, 2) v = [-5, 10.5, 1, -8, 1] assert_almost_equal(np.irr(v), 0.0886, 2)
Example 4
def test_irr(self): v = [-150000, 15000, 25000, 35000, 45000, 60000] assert_almost_equal(np.irr(v), 0.0524, 2) v = [-100, 0, 0, 74] assert_almost_equal(np.irr(v), -0.0955, 2) v = [-100, 39, 59, 55, 20] assert_almost_equal(np.irr(v), 0.28095, 2) v = [-100, 100, 0, -7] assert_almost_equal(np.irr(v), -0.0833, 2) v = [-100, 100, 0, 7] assert_almost_equal(np.irr(v), 0.06206, 2) v = [-5, 10.5, 1, -8, 1] assert_almost_equal(np.irr(v), 0.0886, 2)
Example 5
def test_irr(self): v = [-150000, 15000, 25000, 35000, 45000, 60000] assert_almost_equal(np.irr(v), 0.0524, 2) v = [-100, 0, 0, 74] assert_almost_equal(np.irr(v), -0.0955, 2) v = [-100, 39, 59, 55, 20] assert_almost_equal(np.irr(v), 0.28095, 2) v = [-100, 100, 0, -7] assert_almost_equal(np.irr(v), -0.0833, 2) v = [-100, 100, 0, 7] assert_almost_equal(np.irr(v), 0.06206, 2) v = [-5, 10.5, 1, -8, 1] assert_almost_equal(np.irr(v), 0.0886, 2)
Example 6
def run_many(case): @functools.wraps(case) def wrapped(): for test in range(1000): d, r = case() assert irr.irr(d) == pytest.approx(r) return wrapped
Example 7
def test_performance(): us_times = [] np_times = [] ns = [10, 20, 50, 100] for n in ns: k = 100 sums = [0.0, 0.0] for j in range(k): r = math.exp(random.gauss(0, 1.0 / n)) - 1 x = random.gauss(0, 1) d = [x] + [0.0] * (n-2) + [-x * (1+r)**(n-1)] results = [] for i, f in enumerate([irr.irr, numpy.irr]): t0 = time.time() results.append(f(d)) sums[i] += time.time() - t0 if not numpy.isnan(results[1]): assert results[0] == pytest.approx(results[1]) for times, sum in zip([us_times, np_times], sums): times.append(sum/k) try: from matplotlib import pyplot import seaborn except ImportError: return pyplot.plot(ns, us_times, label='Our library') pyplot.plot(ns, np_times, label='Numpy') pyplot.xlabel('n') pyplot.ylabel('time(s)') pyplot.yscale('log') pyplot.savefig('plot.png')
Example 8
def test_irr(self): v = [-150000, 15000, 25000, 35000, 45000, 60000] assert_almost_equal(np.irr(v), 0.0524, 2) v = [-100, 0, 0, 74] assert_almost_equal(np.irr(v), -0.0955, 2) v = [-100, 39, 59, 55, 20] assert_almost_equal(np.irr(v), 0.28095, 2) v = [-100, 100, 0, -7] assert_almost_equal(np.irr(v), -0.0833, 2) v = [-100, 100, 0, 7] assert_almost_equal(np.irr(v), 0.06206, 2) v = [-5, 10.5, 1, -8, 1] assert_almost_equal(np.irr(v), 0.0886, 2)
Example 9
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 10
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 11
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 12
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 13
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
Example 14
def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)