TensorFlow HOWTO 1.4 Softmax 回归

1.4 Softmax 回归

Softmax 回归可以看成逻辑回归在多个类别上的推广。

操作步骤

导入所需的包。

import tensorflow as tf
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import sklearn.model_selection as ms

导入数据,并进行预处理。我们使用鸢尾花数据集所有样本,根据萼片长度和花瓣长度预测样本属于三个品种中的哪一种。

iris = ds.load_iris()

x_ = iris.data[:, [0, 2]]
y_ = np.expand_dims(iris.target , 1)

x_train, x_test, y_train, y_test = \
    ms.train_test_split(x_, y_, train_size=0.7, test_size=0.3)

定义超参数。

n_input = 2
n_output = 3
n_epoch = 2000
lr = 0.05
变量含义
n_input样本特征数
n_ouput样本类别数
n_epoch迭代数
lr学习率

搭建模型。

变量含义
x输入
y真实标签
y_oh独热的真实标签
w权重
b偏置
z中间变量,x的线性变换
a输出,也就是样本是某个类别的概率
x = tf.placeholder(tf.float64, [None, n_input])
y = tf.placeholder(tf.int64, [None, 1])
y_oh = tf.one_hot(y, n_output)
y_oh = tf.to_double(tf.reshape(y_oh, [-1, n_output]))
w = tf.Variable(np.random.rand(n_input, n_output))
b = tf.Variable(np.random.rand(1, n_output))
z = x @ w + b
a = tf.nn.softmax(z)

定义损失、优化操作、和准确率度量指标。分类问题有很多指标,这里只展示一种。

我们使用交叉熵损失函数,对于多分类问题,需要改一改,如下。

《TensorFlow HOWTO 1.4 Softmax 回归》

变量含义
loss损失
op优化操作
y_hat标签的预测值
acc准确率
loss = - tf.reduce_mean(tf.reduce_sum(y_oh * tf.log(a), 1))
op = tf.train.AdamOptimizer(lr).minimize(loss)

y_hat = tf.argmax(a, 1)
y_hat = tf.expand_dims(y_hat, 1)
acc = tf.reduce_mean(tf.to_double(tf.equal(y_hat, y)))

使用训练集训练模型。

losses = []
accs = []

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver(max_to_keep=1)
    
    for e in range(n_epoch):
        _, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})
        losses.append(loss_)

使用测试集计算准确率。

        acc_ = sess.run(acc, feed_dict={x: x_test, y: y_test})
        accs.append(acc_)

每一百步打印损失和度量值。

        if e % 100 == 0:
            print(f'epoch: {e}, loss: {loss_}, acc: {acc_}')
            saver.save(sess,'logit/logit', global_step=e)

得到决策边界:

    x_plt = x_[:, 0]
    y_plt = x_[:, 1]
    c_plt = y_.ravel()
    x_min = x_plt.min() - 1
    x_max = x_plt.max() + 1
    y_min = y_plt.min() - 1
    y_max = y_plt.max() + 1
    x_rng = np.arange(x_min, x_max, 0.05)
    y_rng = np.arange(y_min, y_max, 0.05)
    x_rng, y_rng = np.meshgrid(x_rng, y_rng)
    model_input = np.asarray([x_rng.ravel(), y_rng.ravel()]).T
    model_output = sess.run(y_hat, feed_dict={x: model_input}).astype(int)
    c_rng = model_output.reshape(x_rng.shape)

输出:

epoch: 0, loss: 1.4210691245230944, acc: 0.4222222222222222
epoch: 100, loss: 0.34817911438772636, acc: 0.9777777777777777
epoch: 200, loss: 0.24319161311060128, acc: 0.9777777777777777
epoch: 300, loss: 0.19423490522003387, acc: 0.9777777777777777
epoch: 400, loss: 0.16772540127514665, acc: 0.9777777777777777
epoch: 500, loss: 0.15148045580780634, acc: 0.9777777777777777
epoch: 600, loss: 0.14055638836845924, acc: 0.9777777777777777
epoch: 700, loss: 0.1326877769387738, acc: 0.9777777777777777
epoch: 800, loss: 0.12672480658251276, acc: 1.0
epoch: 900, loss: 0.12203422030859229, acc: 1.0
epoch: 1000, loss: 0.11824285244695919, acc: 1.0
epoch: 1100, loss: 0.11511738393720357, acc: 1.0
epoch: 1200, loss: 0.11250383205230477, acc: 1.0
epoch: 1300, loss: 0.11029541725080125, acc: 1.0
epoch: 1400, loss: 0.10841477350763963, acc: 1.0
epoch: 1500, loss: 0.10680373944570205, acc: 1.0
epoch: 1600, loss: 0.10541728211943671, acc: 1.0
epoch: 1700, loss: 0.10421972968246913, acc: 1.0
epoch: 1800, loss: 0.10318232665398802, acc: 1.0
epoch: 1900, loss: 0.10228157312421919, acc: 1.0

绘制整个数据集以及决策边界。

plt.figure()
cmap = mpl.colors.ListedColormap(['r', 'b', 'y'])
plt.scatter(x_plt, y_plt, c=c_plt, cmap=cmap)
plt.contourf(x_rng, y_rng, c_rng, alpha=0.2, linewidth=5, cmap=cmap)
plt.title('Data and Model')
plt.xlabel('Petal Length (cm)')
plt.ylabel('Sepal Length (cm)')
plt.show()

https://github.com/wizardforcel/how2tf/raw/master/img/1-4-1.png

绘制训练集上的损失。

plt.figure()
plt.plot(losses)
plt.title('Loss on Training Set')
plt.xlabel('#epoch')
plt.ylabel('Cross Entropy')
plt.show()

https://github.com/wizardforcel/how2tf/raw/master/img/1-4-2.png

绘制测试集上的准确率。

plt.figure()
plt.plot(accs)
plt.title('Accurary on Testing Set')
plt.xlabel('#epoch')
plt.ylabel('Accurary')
plt.show()

https://github.com/wizardforcel/how2tf/raw/master/img/1-4-3.png

扩展阅读

    原文作者:ApacheCN_飞龙
    原文地址: https://www.jianshu.com/p/256b16fea8b6
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞