编程之美 2.4 (1的数目)
仔细分析这个问题,给定了N,似乎就可以通过分析“小于N的数在每一位上可能出现1的次数”之和来得到这个结果。让我们来分析一下对于一个特定的N,如何得到一个规律来分析在每一位上所有出现1的可能性,并求和得到最后的f(N)。
先从一些简单的情况开始观察,看看能不能总结出什么规律。
先看1位数的情况。
如果N = 3,那么从1到3的所有数字:1、2、3,只有个位数字上可能出现1,而且只出现1次,进一步可以发现如果N是个位数,如果N>=1,那么f(N)都等于1,如果N=0,则f(N)为0。
再看2位数的情况。
如果N=13,那么从1到13的所有数字:1、2、3、4、5、6、7、8、9、10、11、12、13,个位和十位的数字上都可能有1,我们可以将它们分开来考虑,个位出现1的次数有两次:1和11,十位出现1的次数有4次:10、11、12和13,所以f(N)=2+4=6。要注意的是11这个数字在十位和个位都出现了1,但是11恰好在个位为1和十位为1中被计算了两次,所以不用特殊处理,是对的。再考虑N=23的情况,它和N=13有点不同,十位出现1的次数为10次,从10到19,个位出现1的次数为1、11和21,所以f(N)=3+10=13。通过对两位数进行分析,我们发现,个位数出现1的次数不仅和个位数字有关,还和十位数有关:如果N的个位数大于等于1,则个位出现1的次数为十位数的数字加1;如果N的个位数为0,则个位出现1的次数等于十位数的数字。而十位数上出现1的次数不仅和十位数有关,还和个位数有关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1;如果十位数大于1,则十位数上出现1的次数为10。
f(13) = 个位出现1的个数 + 十位出现1的个数 = 2 + 4 = 6;
f(23) = 个位出现1的个数 + 十位出现1的个数 = 3 + 10 = 13;
f(33) = 个位出现1的个数 + 十位出现1的个数 = 4 + 10 = 14;
…
f(93) = 个位出现1的个数 + 十位出现1的个数 = 10 + 10 = 20;
接着分析3位数。
如果N = 123:
个位出现1的个数为13:1, 11, 21, …, 91, 101, 111, 121
十位出现1的个数为20:10~19, 110~119
百位出现1的个数为24:100~123
f(23)= 个位出现1的个数 + 十位出现1的个数 + 百位出现1的次数 = 13 + 20 + 24 = 57;
同理我们可以再分析4位数、5位数。读者朋友们可以写一写,总结一下各种情况有什么不同。
根据上面的一些尝试,下面我们推导出一般情况下,从N得到f(N)的计算方法:
假设N=abcde,这里a、b、c、d、e分别是十进制数N的各个数位上的数字。如果要计算百位上出现1的次数,它将会受到三个因素的影响:百位上的数字,百位以下(低位)的数字,百位(更高位)以上的数字。
如果百位上的数字为0,则可以知道,百位上可能出现1的次数由更高位决定,比如12 013,则可以知道百位出现1的情况可能是100~199,1 100~1 199,2 100~2 199,…,11 100~11 199,一共有1 200个。也就是由更高位数字(12)决定,并且等于更高位数字(12)×当前位数(100)。
如果百位上的数字为1,则可以知道,百位上可能出现1的次数不仅受更高位影响,还受低位影响,也就是由更高位和低位共同决定。例如对于12 113,受更高位影响,百位出现1的情况是100~199,1 100~1 199,2 100~2 199,…,11 100~11 199,一共1 200个,和上面第一种情况一样,等于更高位数字(12)×当前位数(100)。但是它还受低位影响,百位出现1的情况是12 100~12 113,一共114个,等于低位数字(123)+1。
如果百位上数字大于1(即为2~9),则百位上可能出现1的次数也仅由更高位决定,比如12 213,则百位出现1的可能性为:100~199,1 100~1 199,2 100~2 199,…,11 100~11 199,12 100~12 199,一共有1 300个,并且等于更高位数字+1(12+1)×当前位数(100)。
通过上面的归纳和总结,我们可以写出如下的更高效算法来计算f(N):
代码清单2-10
int count=0;//需注意越界
int number=1;//操作数
int lower=0;//个位1个数
int mid=0;//十位1个数
int high=0;//百位1个数
int n=123;
while(n/number!=0)
{
lower=n-(n/number)*number;
mid=(n/number)%10;
high=n/(number*10);
System.out.println(lower+” mid= “+mid+” high “+high);
switch(mid)
{
case 0:
count+=high*number;
break;
case 1:
count+=high*number+lower+1;
break;
default:
count+=(high+1)*number;
break;
}
number=number*10;
}
System.out.println(count);
}
2
f(n)=n;
编程之美上得大数存储比较麻烦
至于10的11次方很大数,超出long long 范围,所以需要大数存储,利用字符串解决
该方法需要读者自己解析
现在只验证一下编程之美上给出的结果(c++)
1111111110
#include <iostream>
using namespace std;
int main()
{
long long int low;//注意越界问题
long long int mid;
long long int high;
long long int number = 1;
long long int n=1111111110;
long long int count = 0;//1的计数
while(n/number!=0)
{
low=n-(n/number)*number;
mid=(n/number)%10;
high=n/(number*10);
switch(mid)
{
case 0:
count+=high*number;
break;
case 1:
count+=high*number+low+1;
break;
default:
count+=(high+1)*number;
break;
}
number*=10;
}
if(count==n)
{
cout<<count<<endl;
}
return 0;
}