一般的O(n3)肯定不行。在此基础上优化。
发现j,k满足条件时候,(k – j)就是所有 sum <target的情况了。
而一旦>target, 又因为j不能后退,只能k–,那么问题就被锁定了. 这样可以做到O(n2)
/*
Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
For example, given nums = [-2, 0, 1, 3], and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1]
[-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?
Tags: Array Two Pointers
Similar Problems:(M) 3Sum, (M) 3Sum Closest
*/
/*
Thoughts:
Similar to 3 sum, but ofcourse, this one check on '<' so we can not use HashMap anymore.
Basic concept is to fix first number, then check for the rest two numbers, see if they addup < target.
When checking j and k, realize something nice:
if nums[j] + nums[k] < target - nums[i], that means for all index <= k will work, so directly add (k - j) to result (that's: index = j+1, j+2, ....,k)
also, move j forward for next round.
OR, if three-add-up >= target, since j can only increase, we do k-- to make the three-add-up smaller
Note:
Don't forget to sort, otherwise the sequence/order is unpredictable
*/
public class Solution {
public int threeSumSmaller(int[] nums, int target) {
if (nums == null || nums.length <= 2) {
return 0;
}
Arrays.sort(nums);
int rst = 0;
for (int i = 0; i < nums.length - 2; i++) {
int j = i + 1;
int k = nums.length - 1;
while (j < k) {
if (nums[i] + nums[j] + nums[k] >= target) {
k--;
} else {
rst += (k - j);
j++;
}
}
}//END for
return rst;
}
}