对于二叉查找树的每个节点Node,它的左子树中所有的关键字都小于Node的关键字,而右子树中的所有关键字都大于Node的关键字。
二叉查找树的平均深度是O(log N)。
1.初始化
class BinarySearchTree(object): def __init__(self,key): self.key=key self.left=None self.right=None
2.Find
def find(self,x): if x==self.key: return self elif x<self.key and self.left: return self.left.find(x) elif x>self.key and self.right: return self.right.find(x) else: return None
3.FindMin和FindMax
分别返回树中的最小元素与最大元素的位置。FindMin,从根开始并且只要有左儿子就向左进行查找,终止点是最小元素。FindMax则向右进行。
def findMin(self): if self.left: return self.left.findMin() else: return self def findMax(self): tree=self if tree: while tree.right: tree=tree.right return tree
4.Insert
为了将x插入到树Tree中,先用find查找,如果找到x,则什么也不做。否则,将x插入到遍历路径的最后一点。
来自《Problem Solving with Algorithms and Data Structures》的图片:
def insert(self,x): if x<self.key: if self.left: self.left.insert(x) else: tree=BinarySearchTree(x) self.left=tree elif x>self.key: if self.right: self.right.insert(x) else: tree=BinarySearchTree(x) self.right=tree
5.Delete
删除某节点有3种情况:
5.1 如果节点是一片树叶,那么可以立即被删除。
来自《Problem Solving with Algorithms and Data Structures》的图片:
5.2 如果节点只有一个儿子,则将此节点parent的指针指向此节点的儿子,然后删除。
来自《Problem Solving with Algorithms and Data Structures》的图片:
5.3 如果节点有两个儿子,则将其右子树的最小数据代替此节点的数据,并将其右子树的最小数据(不可能有左儿子,只有一个右儿子)删除。
来自《Problem Solving with Algorithms and Data Structures》的图片:
def delete(self,x): if self.find(x): if x<self.key: self.left=self.left.delete(x) return self elif x>self.key: self.right=self.right.delete(x) return self elif self.left and self.right: key=self.right.findMin().key self.key=key self.right=self.right.delete(key) return self else: if self.left: return self.left else: return self.right else: return self
全部代码
class BinarySearchTree(object): def __init__(self,key): self.key=key self.left=None self.right=None def find(self,x): if x==self.key: return self elif x<self.key and self.left: return self.left.find(x) elif x>self.key and self.right: return self.right.find(x) else: return None def findMin(self): if self.left: return self.left.findMin() else: return self def findMax(self): tree=self if tree: while tree.right: tree=tree.right return tree def insert(self,x): if x<self.key: if self.left: self.left.insert(x) else: tree=BinarySearchTree(x) self.left=tree elif x>self.key: if self.right: self.right.insert(x) else: tree=BinarySearchTree(x) self.right=tree def delete(self,x): if self.find(x): if x<self.key: self.left=self.left.delete(x) return self elif x>self.key: self.right=self.right.delete(x) return self elif self.left and self.right: key=self.right.findMin().key self.key=key self.right=self.right.delete(key) return self else: if self.left: return self.left else: return self.right else: return self
上述写法的缺点是很难处理空树的情况。
另一种类似于链表的写法
class TreeNode(object): def __init__(self,key,left=None,right=None,parent=None): self.key=key self.left=left self.right=right self.parent=parent def hasLeftChild(self): return self.left def hasRightChild(self): return self.right def isLeftChild(self): return self.parent and self.parent.left==self def isRightChild(self): return self.parent and self.parent.right==self class BSTree(object): def __init__(self): self.root=None self.size=0 def length(self): return self.size def insert(self,x): node=TreeNode(x) if not self.root: self.root=node self.size+=1 else: currentNode=self.root while True: if x<currentNode.key: if currentNode.left: currentNode=currentNode.left else: currentNode.left=node node.parent=currentNode self.size+=1 break elif x>currentNode.key: if currentNode.right: currentNode=currentNode.right else: currentNode.right=node node.parent=currentNode self.size+=1 break else: break def find(self,key): if self.root: res=self._find(key,self.root) if res: return res else: return None else: return None def _find(self,key,node): if not node: return None elif node.key==key: return node elif key<node.key: return self._find(key,node.left) else: return self._find(key,node.right) def findMin(self): if self.root: current=self.root while current.left: current=current.left return current else: return None def _findMin(self,node): if node: current=node while current.left: current=current.left return current def findMax(self): if self.root: current=self.root while current.right: current=current.right return current else: return None def delete(self,key): if self.size>1: nodeToRemove=self.find(key) if nodeToRemove: self.remove(nodeToRemove) self.size-=1 else: raise KeyError,'Error, key not in tree' elif self.size==1 and self.root.key==key: self.root=None self.size-=1 else: raise KeyError('Error, key not in tree') def remove(self,node): if not node.left and not node.right: #node为树叶 if node==node.parent.left: node.parent.left=None else: node.parent.right=None elif node.left and node.right: #有两个儿子 minNode=self._findMin(node.right) node.key=minNode.key self.remove(minNode) else: #有一个儿子 if node.hasLeftChild(): if node.isLeftChild(): node.left.parent=node.parent node.parent.left=node.left elif node.isRightChild(): node.left.parent=node.parent node.parent.right=node.left else: #node为根 self.root=node.left node.left.parent=None node.left=None else: if node.isLeftChild(): node.right.parent=node.parent node.parent.left=node.right elif node.isRightChild(): node.right.parent=node.parent node.parent.right=node.right else: #node为根 self.root=node.right node.right.parent=None node.right=None