栈部分
- 判断栈的操作序列是否合法(栈的初始状态和终止状态均为空)。若合法,返回true,反之返回false,操作序列存入一维数组中。I为入栈,O为出栈。
bool validate(const char *a) {
int Icnt = 0, Ocnt = 0;
int i = 0;
while (a[i]!='\0') {
if (a[i] == 'I') {
Icnt++;
}
else if (a[i] == 'O') {
Ocnt++;
}
if (Ocnt > Icnt) return 0;
i++;
}
if (Icnt != Ocnt) return 0;
else return 1;
}
- 判断单链表的前n个数字是否中心对称。例如121,1221都是中心对称。
bool isSymetric(linkList l, int n) {
stack<int> s;
linkList p = l->pNext;
for (int i = 0; i < n/2; i++) {
s.push(p->data);
p = p->pNext;
}
if (n % 2) p = p->pNext;
while (p && s.top() == p->data && !s.empty() )
{
s.pop();
if (s.empty()) break;
p = p->pNext;
}
if (s.empty()) return true;
else return false;
}
- 设有两个栈都采用顺序栈方式,共享一个存储区,[0,maxsize – 1],采用栈顶相向,迎面增长的存储方式,设计出栈和入栈等操作算法。(为了验证,把几乎所有操作都写了,貌似代码不够鲁棒,还希望大佬能看看哪里不太好。)
#define MAXSIZE 100
typedef struct {
int data[MAXSIZE];
int top1, top2;
}Stack;
void initStack(Stack &s) {
s.top1 = -1;
s.top2 = MAXSIZE;
}
bool isEmpty(int i,Stack& s) {
if(i == 0 && s.top1 == -1) return true;
else if (i == 1 && s.top2 == MAXSIZE) return true;
else return false;
}
int top(int i, Stack& s) {
if (isEmpty(i, s)) {
cout << "栈为空" << endl;
return 0;
}
if (i == 0)
return s.data[s.top1];
else if(i==1)
return s.data[s.top2];
}
void pop(int i, Stack& s) {
if (isEmpty(i, s)) {
cout << "栈为空,无法弹出" << endl;
return;
}
if (i == 0) {
cout << "弹出值为" << s.data[s.top1] << endl;
s.top1--;
}
else {
cout << "弹出值为" << s.data[s.top2] << endl;
s.top2++;
}
}
void push(Stack &s, int i, int x) {
if (i != 0 && i != 1) {
cout << "栈号输入错误" << endl;
}
if (s.top2 - s.top1 == 1) {
cout << "栈已满" << endl;
return;
}
if (i == 0) {
s.data[++s.top1] = x;
return;
}
else {
s.data[--s.top2] = x;
return;
}
}
队列部分
- 自己实现一个循环队列,支持队尾的push 和 pop,队头的push和pop。(双端队列)
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
using namespace std;
#define MAXSIZE 3
typedef struct {
int data[MAXSIZE];
int front, rear;
}queue;//做成循环队列那是相当好的 队空条件 front = rear 队满 (rear+1) % maxsize = front
void initQueue(queue &q) {
q.rear = q.front = 0;
}
bool isEmpty(queue &q) {
if (q.rear == q.front) return true;
return false;
}
void push_front(queue &q, int x) {
if ((q.front - 1) % MAXSIZE == q.rear) {
cout << "队列已满,不可加入" << endl;
return;
}
q.data[q.front ] = x;
q.front = (q.front - 1 + MAXSIZE) % MAXSIZE;
cout << "加入元素 \"x=" << x << "\"成功!" << endl;
}
void push_back(queue &q, int x) {
if ((q.rear + 1) % MAXSIZE == q.front) {
cout << "队列已满,不可加入" << endl;
return;
}
q.data[q.rear] = x;
q.rear = (q.rear + 1) % MAXSIZE;
cout << "加入元素 \"x=" << x << "\"成功!" << endl;
}
void pop_back(queue &q) {
//cout << q.rear <<" "<< q.front << endl;
if (isEmpty(q)) {
cout << "队列为空,不可弹出" << endl;
return;
}
//cout << q.rear << " " << q.front << endl;
int x = q.data[q.rear-1];
//cout << "debug1:" << q.rear << endl;
q.rear = (q.rear - 1 + MAXSIZE) % MAXSIZE;
//cout << "debug2:" << q.rear << endl;
cout << "弹出元素为"<<x <<"!"<< endl;
}
void pop_front(queue &q) {
if (isEmpty(q)) {
cout << "队列为空,不可弹出" << endl;
return;
}
int x = q.data[(q.front + 1 )%MAXSIZE];
cout << "弹出元素为" << x << "!" << endl;
q.front = (q.front + 1 ) % MAXSIZE;
}
int main() {
ios::sync_with_stdio(false);
queue q;
initQueue(q);
push_back(q, 10);
push_back(q, 10);
pop_back(q);
pop_back(q);
cout << "front"<<q.front << endl;
cout << "rear" << q.rear << endl;
push_front(q, 10);
// cout << "front" << q.front << endl;
//cout << "rear" << q.rear << endl;
push_front(q, 2);
pop_front(q);
pop_front(q);
system("pause");
return 0;
}
- 实现队列的链式存储结构
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef int elemType;
typedef struct node{
int data;
struct node* next;
}LinkNode;
//设置为带头结点的单链表
typedef struct {
LinkNode *front, *rear;
}queue;
void initQueue(queue &q) {
q.front = (LinkNode*)malloc(sizeof(LinkNode));
q.rear = q.front;
q.front->next = nullptr;
}
bool isEmpty(queue q) {
if (q.front == q.rear) return true;
return false;
}
void enQueue(queue &q, elemType x) {
LinkNode* temp = (LinkNode*)malloc(sizeof(LinkNode));
temp->data = x;
temp->next = nullptr;
q.rear->next = temp;
q.rear = temp;
}
elemType deQueue(queue &q) {
if (isEmpty(q)) {
cout << "队列为空" << endl;
return 0;
}
LinkNode* temp = (LinkNode*)malloc(sizeof(LinkNode));
temp = q.front->next;
int x = temp->data;
q.front ->next= temp->next;
if (q.rear == temp) q.rear = q.front;
free(temp);
return x;
}
int main() {
queue q;
initQueue(q);
enQueue(q, 10);
enQueue(q, 9);
enQueue(q, 11);
enQueue(q, 12);
cout << deQueue(q) << endl;
cout << deQueue(q) << endl;
cout << deQueue(q) << endl;
cout << deQueue(q) << endl;
system("pause");
return 0;
}
最适合做链队的链表是:带队首指针和队尾指针的循环单链表
最不适合的:只带队首指针的非循环链表。
用链式存储方式的队列,进行存储操作时,头尾指针可能都要进行修改。
- 利用一个栈,将队列中的元素逆置。
void reverseQueue(queue<int> &q) {
stack<int> s;
while (!q.empty()) {
s.push(q.front());
q.pop();
}
while (!s.empty()) {
q.push(s.top());
s.pop();
}
}
- 利用两个栈来模拟一个队列。
class Solution
{
public:
void push(int node) {
while (!stack2.empty())
{
stack1.push(stack2.top());
stack2.pop();
}
stack1.push(node);
}
int pop() {
while (!stack1.empty())
{
stack2.push(stack1.top());
stack1.pop();
}
int result = stack2.top();
stack2.pop();
return result;
}
private:
stack<int> stack1;
stack<int> stack2;
};