https://blog.csdn.net/wayjj/article/details/72809344
蚁群算法,单单学习算法还是不够深入了解,得实际编程实现了,理解才能更加透彻,本文根据这篇博文贴出来的代码
进行扩充解释,主要就是做个记录,其中阴影部分是本人自己加注释,或许能给刚开始学蚁群算法和matlab的有一些提示。
以下是解放军信息工程大学一个老师编的matlab程序,请尊重原作者劳动,引用时请注明出处。
原文地址:http://blog.sina.com.cn/s/blog_5013f7e30100aodx.html
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%————————————————————————-
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
%%第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps; %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示
end
D(j,i)=D(i,j); %对称矩阵
end
end
%{
1.C就是城市坐标
x y
城市1 0 120
城市2 120 0
城市n 100 230
2.运行后这里D变成了一个n*n的矩阵,每个元素代表两个城市之间的距离,比如当城市数目为3时:
D= 城市1 城市2 城市3
城市1 0 120 100
城市2 120 0 230
城市3 100 230 0
这里D是个对角线为0的对称矩阵,因为城市1,2间距离等于城市2,1的距离,城市n与n距离设置为0
%}
Eta=1./D; %Eta为启发因子矩阵,这里设为距离的倒数
Tau=ones(n,n); %Tau为信息素矩阵
Tabu=zeros(m,n); %存储并记录路径的生成,禁忌表
NC=1; %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1); %各代最佳路线的长度
L_ave=zeros(NC_max,1); %各代路线的平均长度
while NC<=NC_max %停止条件之一:达到最大迭代次数,停止
%%第二步:将m只蚂蚁放到n个城市上
Randpos=[]; %随机存取
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))’; %此句不太理解?
%{
1.ceil(m/n)
假如有 10只蚂蚁,3个城市,ceil(m/n)=ceil(10/3)=4,需要安排四次,才能把这十只蚂蚁全部放到到三个城市,
每次都在行向量Randpos加入如新的元素,randperm(3)表示就是1 3 2,或者3 1 2这种随机组合,4次循环之后,
那么Randpos =
2 3 1 1 2 3 3 1 2 3 2 1
2.Tabu(:,1)=(Randpos(1,1:m))’
总共m蚂蚁,只这里m为10,Tabu(:,1)表示Tabu第一行就是初始10只蚂蚁被随机分到所三个城市中的一个
Tabu =
2
3
1
1
2
3
3
1
2
3
这里只取m=10个数,因为Tabu第一列表示m只蚂蚁初始的时候随机被分在的城市,比如第一个2代表,第一只蚂蚁
最开始放在了城市2,以此类推
%}
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n %所在城市不计算
for i=1:m
visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
J=zeros(1,(n-j+1)); %待访问的城市
P=J; %待访问城市的选择概率分布
Jc=1; %访问的城市个数
for k=1:n
if length(find(visited==k))==0 %开始时置0
J(Jc)=k; %这时记录没有访问的城市到J中
Jc=Jc+1; %访问的城市个数自加1
end
end
%{
1.visited=Tabu(i,1:(j-1)); 向量visited记录已访问的城市,比如第一次Tabu中第一行第一个的城市2
2.J=zeros(1,(n-j+1)) 向量J记录待访问的城市,已结访问城市2,还没访问1和3城市放入J向量中
3.if length(find(visited==k))==0
判断语句,find()语句找到visited中等于k的元素在数组visited中的位置,例如数组a=[1 2 3 4 5 2],
find(a==2)=[2,6],find(a==6)=[],则
length(find(a==6))=0
length()==0判断length()是否为零
如果为零就是visited中没有k元素,即没有访问过k城市。
这时记录没有访问的城市到J中。
%}
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P); %cumsum,元素累加即求和
Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线%要选择其中总概率大于等于某一个随机数,找到大于等于这个随机数的城市的在J中的位置
to_visit=J(Select(1)); %提取这些城市的编号到to_visit中
Tabu(i,j)=to_visit;
end
end
%{
1. %visited(end)表示蚂蚁现在所在城市编号,J(k)表示下一步要访问的城市编号
2.P=P/(sum(P));把各个路径概率统一到和为1
3.Pcum=cumsum(P); cumsum,元素累加即求和,比如P=[0.1 0.5 0.4],cumsum(P)= [0.1000 0.6000 1.0000]
有一点要特别说明,用到cumsum(P),蚂蚁要选择的下一个城市不是按最大概率,就是要用到轮盘法则,不然影响全局收缩能力,
所以用到累积函数,Pcum=cumsum(P)
4.Select=find(Pcum>=rand); to_visit=J(Select(1))
轮盘法则,Select(1),1保证可以选到最大概率的城市,具体自己可以用matlab试一下:
p=[0.1 0.6 0.3] 中间那个城市概率最大
此时Pcum=[0.1 0.7 1], Select =[2 3]; Select(1)=2,中间那个城市概率最大
%}
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步:记录本次迭代最佳路线
L=zeros(m,1); %开始距离为0,m*1的列向量
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离
end
L(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离,
加上第一个和最后一个城市的距离
end
%{
1.L=zeros(m,1) 记录本次迭代最佳路线的长度,每个蚂蚁都有自己走过的长度记录在向量L中
%}
L_best(NC)=min(L); %最佳距离取最小
pos=find(L==L_best(NC));
%找到路径最短的那条蚂蚁所在的行编号
R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
L_ave(NC)=mean(L); %此轮迭代后的平均距离
NC=NC+1 %迭代继续
%{
1.R_best(NC,:)=Tabu(pos(1),:):找到路径最短的那条蚂蚁所在的城市先后顺序,pos(1)中1表示万一有长度一样的两条蚂蚁,那就选第一个
%}
%%第五步:更新信息素
Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
%此次循环在路径(i,j)上的信息素增量
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i); %
加上第一个到最后一个城市的信息素增量
%此次循环在整个路径上的信息素增量
end
Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
%%第六步:禁忌表清零
Tabu=zeros(m,n); %%直到最大迭代次数
end
%{
1.R_best(NC,:)=Tabu(pos(1),:):找到路径最短的那条蚂蚁所在的城市先后顺序,pos(1)中1表示万一有长度一样的两条蚂蚁,那就选第一个
%}
%%第七步:输出结果
Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离
subplot(1,2,1) %绘制第一个子图形
DrawRoute(C,Shortest_Route) %画路线图的子函数
subplot(1,2,2) %绘制第二个子图形
plot(L_best)
hold on %保持图形
plot(L_ave,’r’)
title(‘平均距离和最短距离’) %标题
%{
这部分没什么太大问题,多看几遍就好
%}
function DrawRoute(C,R)
%%=========================================================================
%% DrawRoute.m
%% 画路线图的子函数
%%————————————————————————-
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%=========================================================================
N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],’r’)
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],’r’)
hold on
end
title(‘旅行商问题优化结果 ‘)
%{
要运行的话得加一下初始变量,在matlab界面粘贴如下代码:
clear all;close all;clc;
c=[1,2;70,90;80,60;10,100;800,200;800,100;90,80;200,600;230,4;500,90];
nc=100;
m=18;
a=1;
b=5;
p=0.5;
q=1;
ACATSP(c,nc,m,a,b,p,q);
%}