Java实现算法导论中快速傅里叶变换FFT递归算法

要结合算法导论理解,参考:http://blog.csdn.net/fjssharpsword/article/details/53281889

代码中算法思路:输入n位(2的幂)向量,分别求值FFT和插值逆FFT,并计算卷积。

package sk.mlib;
/*************************************************************************
 *  Compilation:  javac FFT.java
 *  Execution:    java FFT N
 *  Dependencies: Complex.java
 *
 *  Compute the FFT and inverse FFT of a length N complex sequence.
 *  Bare bones implementation that runs in O(N log N) time. Our goal
 *  is to optimize the clarity of the code, rather than performance.
 *
 *  Limitations
 *  -----------
 *   -  assumes N is a power of 2
 *
 *   -  not the most memory efficient algorithm (because it uses
 *      an object type for representing complex numbers and because
 *      it re-allocates memory for the subarray, instead of doing
 *      in-place or reusing a single temporary array)
 *  
 *************************************************************************/
public class FFT {
	// compute the FFT of x[], assuming its length is a power of 2
    public static Complex[] fft(Complex[] x) {
        int N = x.length;

        // base case
        if (N == 1) return new Complex[] { x[0] };

        // radix 2 Cooley-Tukey FFT
        if (N % 2 != 0) { throw new RuntimeException("N is not a power of 2"); }

        // fft of even terms
        Complex[] even = new Complex[N/2];
        for (int k = 0; k < N/2; k++) {
            even[k] = x[2*k];
        }
        Complex[] q = fft(even);

        // fft of odd terms
        Complex[] odd  = even;  // reuse the array
        for (int k = 0; k < N/2; k++) {
            odd[k] = x[2*k + 1];
        }
        Complex[] r = fft(odd);

        // combine
        Complex[] y = new Complex[N];
        for (int k = 0; k < N/2; k++) {
            double kth = -2 * k * Math.PI / N;
            Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
            y[k]       = q[k].plus(wk.times(r[k]));
            y[k + N/2] = q[k].minus(wk.times(r[k]));
        }
        return y;
    }


    // compute the inverse FFT of x[], assuming its length is a power of 2
    public static Complex[] ifft(Complex[] x) {
        int N = x.length;
        Complex[] y = new Complex[N];

        // take conjugate
        for (int i = 0; i < N; i++) {
            y[i] = x[i].conjugate();
        }

        // compute forward FFT
        y = fft(y);

        // take conjugate again
        for (int i = 0; i < N; i++) {
            y[i] = y[i].conjugate();
        }

        // divide by N
        for (int i = 0; i < N; i++) {
            y[i] = y[i].scale(1.0 / N);
        }

        return y;

    }

    // compute the circular convolution of x and y
    public static Complex[] cconvolve(Complex[] x, Complex[] y) {

        // should probably pad x and y with 0s so that they have same length
        // and are powers of 2
        if (x.length != y.length) { throw new RuntimeException("Dimensions don't agree"); }

        int N = x.length;

        // compute FFT of each sequence,求值
        Complex[] a = fft(x);
        Complex[] b = fft(y);

        // point-wise multiply,点值乘法
        Complex[] c = new Complex[N];
        for (int i = 0; i < N; i++) {
            c[i] = a[i].times(b[i]);
        }

        // compute inverse FFT,插值
        return ifft(c);
    }


    // compute the linear convolution of x and y
    public static Complex[] convolve(Complex[] x, Complex[] y) {
        Complex ZERO = new Complex(0, 0);

        Complex[] a = new Complex[2*x.length];//2n次数界,高阶系数为0.
        for (int i = 0;        i <   x.length; i++) a[i] = x[i];
        for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;

        Complex[] b = new Complex[2*y.length];
        for (int i = 0;        i <   y.length; i++) b[i] = y[i];
        for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;

        return cconvolve(a, b);
    }

    // display an array of Complex numbers to standard output
    public static void show(Complex[] x, String title) {
        System.out.println(title);
        System.out.println("-------------------");
        for (int i = 0; i < x.length; i++) {
            System.out.println(x[i]);
        }
        System.out.println();
    }

    public static void main(String[] args) { 
        //int N = Integer.parseInt(args[0]);
    	int N=8;
        Complex[] x = new Complex[N];

        // original data
        for (int i = 0; i < N; i++) {
            x[i] = new Complex(i, 0);
            x[i] = new Complex(-2*Math.random() + 1, 0);
        }
        show(x, "x");

        // FFT of original data
        Complex[] y = fft(x);
        show(y, "y = fft(x)");

        // take inverse FFT
        Complex[] z = ifft(y);
        show(z, "z = ifft(y)");

        // circular convolution of x with itself
        Complex[] c = cconvolve(x, x);
        show(c, "c = cconvolve(x, x)");

        // linear convolution of x with itself
        Complex[] d = convolve(x, x);
        show(d, "d = convolve(x, x)");
    }
}
/*********************************************************************
 % java FFT 8
  x
-------------------
-0.35668879080953375
-0.6118094913035987
0.8534269560320435
-0.6699697478438837
0.35425500561437717
0.8910250650549392
-0.025718699518642918
0.07649691490732002

y = fft(x)
-------------------
0.5110172121330208
-1.245776663065442 + 0.7113504894129803i
-0.8301420417085572 - 0.8726884066879042i
-0.17611092978238008 + 2.4696418005143532i
1.1395317305034673
-0.17611092978237974 - 2.4696418005143532i
-0.8301420417085572 + 0.8726884066879042i
-1.2457766630654419 - 0.7113504894129803i

z = ifft(y)
-------------------
-0.35668879080953375
-0.6118094913035987 + 4.2151962932466006E-17i
0.8534269560320435 - 2.691607282636124E-17i
-0.6699697478438837 + 4.1114763914420734E-17i
0.35425500561437717
0.8910250650549392 - 6.887033953004965E-17i
-0.025718699518642918 + 2.691607282636124E-17i
0.07649691490732002 - 1.4396387316837096E-17i

c = cconvolve(x, x)
-------------------
-1.0786973139009466 - 2.636779683484747E-16i
1.2327819138980782 + 2.2180047699856214E-17i
0.4386976685553382 - 1.3815636262919812E-17i
-0.5579612069781844 + 1.9986455722517509E-16i
1.432390480003344 + 2.636779683484747E-16i
-2.2165857430333684 + 2.2180047699856214E-17i
-0.01255525669751989 + 1.3815636262919812E-17i
1.0230680492494633 - 2.4422465262488753E-16i

d = convolve(x, x)
-------------------
0.12722689348916738 + 3.469446951953614E-17i
0.43645117531775324 - 2.78776395788635E-18i
-0.2345048043334932 - 6.907818131459906E-18i
-0.5663280251946803 + 5.829891518914417E-17i
1.2954076913348198 + 1.518836016779236E-16i
-2.212650940696159 + 1.1090023849928107E-17i
-0.018407034687857718 - 1.1306778366296569E-17i
1.023068049249463 - 9.435675069681485E-17i
-1.205924207390114 - 2.983724378680108E-16i
0.796330738580325 + 2.4967811657742562E-17i
0.6732024728888314 - 6.907818131459906E-18i
0.00836681821649593 + 1.4156564203603091E-16i
0.1369827886685242 + 1.1179436667055108E-16i
-0.00393480233720922 + 1.1090023849928107E-17i
0.005851777990337828 + 2.512241462921638E-17i
1.1102230246251565E-16 - 1.4986790192807268E-16i
 
 *********************************************************************/

依赖Complex.java 复数操作类的实现:

package sk.mlib;
/******************************************************************************
 *  Compilation:  javac Complex.java
 *  Execution:    java Complex
 *
 *  Data type for complex numbers.
 *
 *  The data type is "immutable" so once you create and initialize
 *  a Complex object, you cannot change it. The "final" keyword
 *  when declaring re and im enforces this rule, making it a
 *  compile-time error to change the .re or .im instance variables after
 *  they've been initialized.
 *
 *  % java Complex
 *  a            = 5.0 + 6.0i
 *  b            = -3.0 + 4.0i
 *  Re(a)        = 5.0
 *  Im(a)        = 6.0
 *  b + a        = 2.0 + 10.0i
 *  a - b        = 8.0 + 2.0i
 *  a * b        = -39.0 + 2.0i
 *  b * a        = -39.0 + 2.0i
 *  a / b        = 0.36 - 1.52i
 *  (a / b) * b  = 5.0 + 6.0i
 *  conj(a)      = 5.0 - 6.0i
 *  |a|          = 7.810249675906654
 *  tan(a)       = -6.685231390246571E-6 + 1.0000103108981198i
 *
 ******************************************************************************/
import java.util.Objects;
public class Complex {
	    private final double re;   // the real part
	    private final double im;   // the imaginary part

	    // create a new object with the given real and imaginary parts
	    public Complex(double real, double imag) {
	        re = real;
	        im = imag;
	    }

	    // return a string representation of the invoking Complex object
	    public String toString() {
	        if (im == 0) return re + "";
	        if (re == 0) return im + "i";
	        if (im <  0) return re + " - " + (-im) + "i";
	        return re + " + " + im + "i";
	    }

	    // return abs/modulus/magnitude
	    public double abs() {
	        return Math.hypot(re, im);
	    }

	    // return angle/phase/argument, normalized to be between -pi and pi
	    public double phase() {
	        return Math.atan2(im, re);
	    }

	    // return a new Complex object whose value is (this + b)
	    public Complex plus(Complex b) {
	        Complex a = this;             // invoking object
	        double real = a.re + b.re;
	        double imag = a.im + b.im;
	        return new Complex(real, imag);
	    }

	    // return a new Complex object whose value is (this - b)
	    public Complex minus(Complex b) {
	        Complex a = this;
	        double real = a.re - b.re;
	        double imag = a.im - b.im;
	        return new Complex(real, imag);
	    }

	    // return a new Complex object whose value is (this * b)
	    public Complex times(Complex b) {
	        Complex a = this;
	        double real = a.re * b.re - a.im * b.im;
	        double imag = a.re * b.im + a.im * b.re;
	        return new Complex(real, imag);
	    }

	    // return a new object whose value is (this * alpha)
	    public Complex scale(double alpha) {
	        return new Complex(alpha * re, alpha * im);
	    }

	    // return a new Complex object whose value is the conjugate of this
	    public Complex conjugate() {
	        return new Complex(re, -im);
	    }

	    // return a new Complex object whose value is the reciprocal of this
	    public Complex reciprocal() {
	        double scale = re*re + im*im;
	        return new Complex(re / scale, -im / scale);
	    }

	    // return the real or imaginary part
	    public double re() { return re; }
	    public double im() { return im; }

	    // return a / b
	    public Complex divides(Complex b) {
	        Complex a = this;
	        return a.times(b.reciprocal());
	    }

	    // return a new Complex object whose value is the complex exponential of this
	    public Complex exp() {
	        return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
	    }

	    // return a new Complex object whose value is the complex sine of this
	    public Complex sin() {
	        return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
	    }

	    // return a new Complex object whose value is the complex cosine of this
	    public Complex cos() {
	        return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
	    }

	    // return a new Complex object whose value is the complex tangent of this
	    public Complex tan() {
	        return sin().divides(cos());
	    }
	    


	    // a static version of plus
	    public static Complex plus(Complex a, Complex b) {
	        double real = a.re + b.re;
	        double imag = a.im + b.im;
	        Complex sum = new Complex(real, imag);
	        return sum;
	    }

	    // See Section 3.3.
	    public boolean equals(Object x) {
	        if (x == null) return false;
	        if (this.getClass() != x.getClass()) return false;
	        Complex that = (Complex) x;
	        return (this.re == that.re) && (this.im == that.im);
	    }

	    // See Section 3.3.
	    public int hashCode() {
	        return Objects.hash(re, im);
	    }

	    // sample client for testing
	    public static void main(String[] args) {
	        Complex a = new Complex(5.0, 6.0);
	        Complex b = new Complex(-3.0, 4.0);

	        System.out.println("a            = " + a);
	        System.out.println("b            = " + b);
	        System.out.println("Re(a)        = " + a.re());
	        System.out.println("Im(a)        = " + a.im());
	        System.out.println("b + a        = " + b.plus(a));
	        System.out.println("a - b        = " + a.minus(b));
	        System.out.println("a * b        = " + a.times(b));
	        System.out.println("b * a        = " + b.times(a));
	        System.out.println("a / b        = " + a.divides(b));
	        System.out.println("(a / b) * b  = " + a.divides(b).times(b));
	        System.out.println("conj(a)      = " + a.conjugate());
	        System.out.println("|a|          = " + a.abs());
	        System.out.println("tan(a)       = " + a.tan());
	    }
}

    原文作者:递归算法
    原文地址: https://blog.csdn.net/fjssharpsword/article/details/53282918
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞