uniform distribution
>>> help(torch.rand)
Returns a tensor filled with random numbers from a uniform distribution
on the interval :math:`[0, 1)`
The shape of the tensor is defined by the variable argument :attr:`sizes`.
Args:
sizes (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.rand(4)
tensor([ 0.5204, 0.2503, 0.3525, 0.5673])
>>> torch.rand(2, 3)
tensor([[ 0.8237, 0.5781, 0.6879],
[ 0.3816, 0.7249, 0.0998]])
normal distribution
>>> help(torch.randn)
fault_tensor_type`).
layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.
Default: ``torch.strided``.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
Example::
>>> torch.randn(4)
tensor([-2.1436, 0.9966, 2.3426, -0.6366])
>>> torch.randn(2, 3)
tensor([[ 1.5954, 2.8929, -1.0923],
[ 1.1719, -0.4709, -0.1996]])
torch.randperm
torch.randperm(n, out=None) → LongTensor
给定参数n
,返回一个从0
到n -1
的随机整数排列。
随机种子
torch.manual_seed
>>> torch.manual_seed(5)
<torch._C.Generator object at 0x111d589b0>
>>> torch.initial_seed()
5
torch.normal
>>> help(torch.normal)
mean (float, optional): the mean for all distributions
std (Tensor): the tensor of per-element standard deviations
out (Tensor, optional): the output tensor
Example::
>>> torch.normal(mean=0.5, std=torch.arange(1., 6.))
tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303])
.. function:: normal(mean, std=1.0, out=None) -> Tensor
Similar to the function above, but the standard-deviations are shared among
all drawn elements.
Args:
mean (Tensor): the tensor of per-element means
std (float, optional): the standard deviation for all distributions
out (Tensor, optional): the output tensor
Example::
>>> torch.normal(mean=torch.arange(1., 6.))
tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361])