没有系统的学习梳理过pytorch的基本使用方法,之前都是用到哪儿学到哪儿,最近几天准备梳理一下pytorch的简单使用方法
主要参考莫烦python 的pytorch系列学习整理下来方便日后查看
pytorch的tensor与numpy的ndarrray进行转换
# -*- coding:utf-8 -*-
import torch
import numpy as np
np_data = np.arange(6)
#print(np_data) [0 1 2 3 4 5]
np_data = np_data.reshape(2,3)
#print(np_data) [[0 1 2][3 4 5]] #建立ndarray数组
torch_data = torch.from_numpy(np_data)
#print(torch_data) tensor([[0, 1, 2],[3, 4, 5]]) #将numpy数组转换为tensor
tensor2array = torch_data.numpy()
#print(tensor2array) [[0 1 2][3 4 5]]
#print(tensor2array.dtype) int64 #将tensor转换为numpy格式
# print(
# '\nnumpy array:', np_data, # [[0 1 2], [3 4 5]]
# '\ntorch tensor:', torch_data, # 0 1 2 \n 3 4 5 [torch.LongTensor of size 2x3]
# '\ntensor to array:', tensor2array, # [[0 1 2], [3 4 5]]
# )
data = [-1, -2, 1, 2]
tensor = torch.FloatTensor(data) # 32-bit floating point
#print(tensor)
# abs
print(
"\n abs",
"\n numpy:",np.abs(data),
"\n tensor:", torch.abs(tensor),
)
# sin
print(
'\nsin',
'\nnumpy: ', np.sin(data), # [-0.84147098 -0.90929743 0.84147098 0.90929743]
'\ntorch: ', torch.sin(tensor) # [-0.8415 -0.9093 0.8415 0.9093]
)
# mean
print(
'\nmean',
'\nnumpy: ', np.mean(data), # 0.0
'\ntorch: ', torch.mean(tensor) # 0.0
)
# matrix multiplication
data = [[1,2], [3,4]]
tensor = torch.FloatTensor(data) # 32-bit floating point
# print(tensor.type())
tensor2 = tensor.double()
#print(tensor2,tensor2.type()) tensor([[1., 2.], [3., 4.]], dtype=torch.float64) torch.DoubleTensor
# correct method
print(
'\nmatrix multiplication (matmul)',
'\nnumpy: ', np.matmul(data, data), # [[7, 10], [15, 22]]
'\ntorch: ', torch.mm(tensor, tensor) # [[7, 10], [15, 22]]
)
# incorrect method
data = np.array(data)
print(
'\nmatrix multiplication (dot)',
'\nnumpy: ', data.dot(data), # [[7, 10], [15, 22]]
'\ntorch: ', tensor.dot(tensor) # this will convert tensor to [1,2,3,4], you'll get 30.0
)
相关的源码主要还是采用莫烦python的源码,并添加自己的一些理解,随后整理完成,自己的代码也会放置在自己github主页上