pytorch_regression

主要参考莫烦regression讲解:

关系拟合 (回归) – PyTorch | 莫烦Python

回归问题是一类非常简单但是非常经典的问题,如预测房价

有很多种解决方式,比如NG的机器学习课程matlab作业

用tf也可以写,但是就是挺麻烦的

但是用pytorch写出来真的很轻松,并且特别好理解

以下是代码(基本和莫烦大大一样,我只是重新用手敲了一遍!)

import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt

#fake data
x = torch.unsqueeze(torch.linspace(-1,1,100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())

#Variable
x,y = Variable(x), Variable(y)

#plot
#plt.scatter(x.data.numpy(), y.data.numpy())
#plt.show()

#class
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self,x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x

net = Net(1,10,1)
plt.ion()
plt.show()
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()


for t in range(1000):
    prediction = net(x)

    loss = loss_func(prediction, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    # 接着上面来
    if t % 5 == 0:
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'Loss=%.4f' % loss.data[0], fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)

    原文作者:victor diao
    原文地址: https://zhuanlan.zhihu.com/p/35247567
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞