由浅入深之Tensorflow(1)----linear_regression实现

  Tensorflow是目前非常流行的deeplearning框架,学习Tensorflow最好的方法是github上的tf项目https://github.com/tensorflow/tensorflow

或者阅读极客学院主导翻译的中文教程http://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/reading_data.html 。

  此处对tensorflow的基本语法不予赘述,直接贴上源码:

import numpy as np
import tensorflow as tf

#准备数据 trainX
= np.linspace(-1, 1, 101) trainY = 2 * trainX + np.random.randn(*trainX.shape) * 0.33
#定义模型
def model(X, w): return tf.mul(X, w)
#初始化数据流图 X
= tf.placeholder('float') Y = tf.placeholder('float') w = tf.Variable(0.0, name = 'weights') y_ = model(X, w)

#评估模型 cost
= tf.square(Y - y_) train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost) sess = tf.InteractiveSession() init = tf.initialize_all_variables() #训练 sess.run(init) for i in range(100): for (x, y) in zip(trainX, trainY): sess.run(train_op, feed_dict = {X: x, Y: y}) print sess.run(w) sess.close()

 

    原文作者:tensorflow
    原文地址: https://www.cnblogs.com/upright/p/6136193.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞