Key-Value键值存储原理初识(NOSQL)

NO-Sql数据库:Not Only不仅仅是SQL

定义:非关系型数据库;NoSQL用于超大规模数据的存储。(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。需要进一步数据挖掘和分析。

RDBMS VS NOSQL

RDBMSNoSQL
高度组织化结构化数据 代表着不仅仅是SQL
结构化查询语言(SQL) (SQL) 没有声明性查询语言
数据和关系都存储在单独的表中没有预定义的模式
数据操纵语言,数据定义语言 键 – 值对存储,列存储,文档存储,图形数据库
严格的一致性最终一致性,而非ACID属性
基础事务非结构化和不可预知的数据
 

CAP定理

 

高性能,高可用性和可伸缩性

 

 

 

 

 

 

对可用性及一致性的弱要求原则:BASE

  • Basically Availble –基本可用
  • Soft-state –软状态/柔性事务。 “Soft state” 可以理解为”无连接”的, 而 “Hard state” 是”面向连接”的
  • Eventual Consistency –最终一致性 最终一致性, 也是是 ACID 的最终目的。

 

NoSQL 数据库分类

类型

 

部分代表

 

特点
列存储

Hbase

Cassandra

Hypertable

顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查询有非常大的IO优势。

文档存储

MongoDB

CouchDB

文档存储一般用类似json的格式存储,存储的内容是文档型的。这样也就有有机会对某些字段建立索引,实现关系数据库的某些功能。

key-value存储

Tokyo Cabinet / Tyrant

Berkeley DB

MemcacheDB

Redis

可以通过key快速查询到其value。一般来说,存储不管value的格式,照单全收。(Redis包含了其他功能)

图存储

Neo4J

FlockDB

图形关系的最佳存储。使用传统关系数据库来解决的话性能低下,而且设计使用不方便。

对象存储

db4o

Versant

通过类似面向对象语言的语法操作数据库,通过对象的方式存取数据。

xml数据库

Berkeley DB XML

BaseX

高效的存储XML数据,并支持XML的内部查询语法,比如XQuery,Xpath。

 

Key-Value存储:(基于Redis)

传统的关系型数据库,处理一对多的问题,需要把外键放在多的一端,因为RDBMS理论中没有集合这个概念。而使用Redis,我们可以在一端来管理一对多的关系,使用Set。

如果使用MySQL,当数据规模非常大时,上面两个查询操作都需要借助表关联技术,而大表间的join在大型系统中是需要极力避免的操作。相反Redis的每个操作都会局限在一个较小的数据集范围内,而且key-value的存储形式,定位key只是一个复杂度为O(1)的操作。在very huge的数据量下,Redis性能效果非常优异,这就是NoSQL的优势所在!

    原文作者:noSql
    原文地址: https://www.cnblogs.com/newcoder/p/5689525.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞