5. Longest Palindromic Substring
题目
Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example:
Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.
Example:
Input: "cbbd"
Output: "bb"
解析
- 想到了左右拓展的方法,但是开始不知道怎么处理
- 动态规划的方法
class Solution_5 {
public:
// reverse(res.begin(),res.end());
// return s == string(s.rbegin(), s.rend());
bool isPalindrome(string s)
{
return s ==string(s.rbegin(),s.rend());
}
// 处理bb和aba的情况
string expandstring(const string s,int l,int r)
{
while(l >= 0&&r<s.size()&&s[l]==s[r])
{
l--;
r++;
}
return s.substr(l+1,r-l-1);
}
string longestPalindrome(string s) {
if (s.size()<=1)
{
return s;
}
string longestr = s.substr(0, 1);
for (int i = 0; i < s.size()-1;i++)
{
string expand = expandstring(s, i, i);
if (expand.length()>longestr.size())
{
longestr = expand;
}
string expand2 = expandstring(s,i,i+1);
if (expand2.length()>longestr.length())
{
longestr = expand2;
}
}
return longestr;
}
};
string longestPalindromeDP(string s) {
int n = s.length();
int longestBegin = 0;
int maxLen = 1;
bool table[1000][1000] = {false};
for (int i = 0; i < n; i++) {
table[i][i] = true;
}
for (int i = 0; i < n-1; i++) {
if (s[i] == s[i+1]) {
table[i][i+1] = true;
longestBegin = i;
maxLen = 2;
}
}
for (int len = 3; len <= n; len++) { //对每个长度拓展查看
for (int i = 0; i < n-len+1; i++) {
int j = i+len-1;
if (s[i] == s[j] && table[i+1][j-1]) {
table[i][j] = true;
longestBegin = i;
maxLen = len;
}
}
}
return s.substr(longestBegin, maxLen);
}
题目来源