236. Lowest Common Ancestor of a Binary Tree
题目
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.
解析
思路:从根节点开始遍历,如果node1和node2中的任一个和root匹配,那么root就是最低公共祖先。 如果都不匹配,则分别递归左、右子树,如果有一个 节点出现在左子树,并且另一个节点出现在右子树,则root就是最低公共祖先. 如果两个节点都出现在左子树,则说明最低公共祖先在左子树中,否则在右子树。感觉很奇妙。引申的问题
- 如果给定的不是二叉树,而是二叉搜索树呢?会比较简单一点,如果是带有指向父节点的指针的树,可以转化为两个链表求交汇点的问题。
class Solution_236 { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (root==NULL||root==q||root==p) { return root; } TreeNode* left = lowestCommonAncestor(root->left, p, q); TreeNode* right = lowestCommonAncestor(root->right, p, q); if (left!=NULL&&right!=NULL) { return root; } return left == NULL ? right : left; } };