You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Follow up:
Could you do this in-place?
题目解析:
题目不难,只是旋转,但要仔细换图看清楚旋转的坐标。
方案一:
[i,j]–>[j,n-1-i]–>[n-1-i,n-1-j]–>[n-1-j,i]
还是有一定规律的,坐标向右走的时候,y1=x0,x1=n-1-y0。
如果正向的话要一点一点保存要赋给的位置,那么坐标找到了,逆时针赋值,会更简单。
坐标范围中,j<n-i-1,必须小于,因为n-i-1已经被转移了。
class Solution {
public:
void rotate(vector<vector<int> > &matrix) {
int n = matrix.size();
if(n<=1)
return ;
for(int i = 0;i < n/2;i++){
for(int j = i;j < n-i-1;j++){
int tmp = matrix[i][j];
matrix[i][j] = matrix[n-1-j][i];
matrix[n-1-j][i] = matrix[n-1-i][n-1-j];
matrix[n-1-i][n-1-j] = matrix[j][n-1-i];
matrix[j][n-1-i] = tmp;
}
}
}
};
方案二:
class Solution {
public:
void rotate(vector<vector<int> > &matrix) {
int i,j,temp;
int n=matrix.size();
// 沿着副对角线反转
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n - i; ++j) {
temp = matrix[i][j];
matrix[i][j] = matrix[n - 1 - j][n - 1 - i];
matrix[n - 1 - j][n - 1 - i] = temp;
}
}
// 沿着水平中线反转
for (int i = 0; i < n / 2; ++i){
for (int j = 0; j < n; ++j) {
temp = matrix[i][j];
matrix[i][j] = matrix[n - 1 - i][j];
matrix[n - 1 - i][j] = temp;
}
}
}
};