一种比较省内存的稀疏矩阵Python存储方案

推荐系统中经常需要处理类似user_id, item_id, rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用:1、不能很好的同时支持data[i, …]、data[…, j]、data[i, j]快速切片;2、由于数据保存在内存中,不能很好的支持海量数据处理。

要支持data[i, …]、data[…, j]的快速切片,需要i或者j的数据集中存储;同时,为了保存海量的数据,也需要把数据的一部分放在硬盘上,用内存做buffer。这里的解决方案比较简单,用一个类Dict的东西来存储数据,对于某个i(比如9527),它的数据保存在dict[‘i9527’]里面,同样的,对于某个j(比如3306),它的全部数据保存在dict[‘j3306’]里面,需要取出data[9527, …]的时候,只要取出dict[‘i9527’]即可,dict[‘i9527’]原本是一个dict对象,储存某个j对应的值,为了节省内存空间,我们把这个dict以二进制字符串形式存储,直接上代码:

'''
Sparse Matrix
'''
import struct
import numpy as np
import bsddb
from cStringIO import StringIO
 
class DictMatrix():
    def __init__(self, container = {}, dft = 0.0):
        self._data  = container
        self._dft   = dft
        self._nums  = 0
 
    def __setitem__(self, index, value):
        try:
            i, j = index
        except:
            raise IndexError('invalid index')
 
        ik = ('i%d' % i)
        # 为了节省内存,我们把j, value打包成字二进制字符串
        ib = struct.pack('if', j, value)
        jk = ('j%d' % j)
        jb = struct.pack('if', i, value)
 
        try:
            self._data[ik] += ib
        except:
            self._data[ik] = ib
        try:
            self._data[jk] += jb
        except:
            self._data[jk] = jb
        self._nums += 1
 
    def __getitem__(self, index):
        try:
            i, j = index
        except:
            raise IndexError('invalid index')
 
        if (isinstance(i, int)):
            ik = ('i%d' % i)
            if not self._data.has_key(ik): return self._dft
            ret = dict(np.fromstring(self._data[ik], dtype = 'i4,f4'))
            if (isinstance(j, int)): return ret.get(j, self._dft)
 
        if (isinstance(j, int)):
            jk = ('j%d' % j)
            if not self._data.has_key(jk): return self._dft
            ret = dict(np.fromstring(self._data[jk], dtype = 'i4,f4'))
 
        return ret
 
    def __len__(self):
        return self._nums
 
    def __iter__(self):
        pass
 
    '''
    从文件中生成matrix
    考虑到dbm读写的性能不如内存,我们做了一些缓存,每1000W次批量写入一次
    考虑到字符串拼接性能不太好,我们直接用StringIO来做拼接
    '''
    def from_file(self, fp, sep = 't'):
        cnt = 0
        cache = {}
        for l in fp:
            if 10000000 == cnt:
                self._flush(cache)
                cnt = 0
                cache = {}
            i, j, v = [float(i) for i in l.split(sep)]
 
            ik = ('i%d' % i)
            ib = struct.pack('if', j, v)
            jk = ('j%d' % j)
            jb = struct.pack('if', i, v)
 
            try:
                cache[ik].write(ib)
            except:
                cache[ik] = StringIO()
                cache[ik].write(ib)
 
            try:
                cache[jk].write(jb)
            except:
                cache[jk] = StringIO()
                cache[jk].write(jb)
 
            cnt += 1
            self._nums += 1
 
        self._flush(cache)
        return self._nums
 
    def _flush(self, cache):
        for k,v in cache.items():
            v.seek(0)
            s = v.read()
            try:
                self._data[k] += s
            except:
                self._data[k] = s
 
if __name__ == '__main__':
    db = bsddb.btopen(None, cachesize = 268435456)
    data = DictMatrix(db)
    data.from_file(open('/path/to/log.txt', 'r'), ',')

测试4500W条rating数据(整形,整型,浮点格式),922MB文本文件导入,采用内存dict储存的话,12分钟构建完毕,消耗内存1.2G,采用示例代码中的bdb存储,20分钟构建完毕,占用内存300~400MB左右,比cachesize大不了多少,数据读取测试:

import timeit
timeit.Timer('foo = __main__.data[9527, ...]', 'import __main__').timeit(number = 1000)

消耗1.4788秒,大概读取一条数据1.5ms。

采用类Dict来存储数据的另一个好处是你可以随便用内存Dict或者其他任何形式的DBM,甚至传说中的Tokyo Cabinet….

好的,码完收工。

点赞