资源|TensorFlow的71个使用教程与案例(资源汇总)

微信公众号:全球人工智能

文章参考:ACM官网 编辑:王建

TensorFlow Examples

TensorFlow Tutorial with popular machine learning algorithms implementation. This tutorial was designed for easily diving into TensorFlow, through examples.

It is suitable for beginners who want to find clear and concise examples about TensorFlow. For readability, the tutorial includes both notebook and code with explanations.

Note: If you are using older TensorFlow version (before 0.12), please have a look here(aymericdamien/TensorFlow-Examples

Tutorial index

0 – Prerequisite

  • Introduction to Machine Learning

(notebook:aymericdamien/TensorFlow-Examples)

  • Introduction to MNIST Dataset

(notebook:aymericdamien/TensorFlow-Examples)

1 – Introduction

  • Hello World

(notebook) aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py

  • Basic Operations

(notebook)aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py

2 – Basic Models

  • Nearest Neighbor

(notebook)aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py

  • Linear Regression

(notebook)aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py

  • Logistic Regression

(notebook)aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py

3 – Neural Networks

  • Multilayer Perceptron

(notebook)aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/multilayer_perceptron.py

  • Convolutional Neural Network

(notebook)aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py

  • Recurrent Neural Network (LSTM)

(notebook)aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py

  • Bidirectional Recurrent Neural Network (LSTM)

(notebook) aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py

  • Dynamic Recurrent Neural Network (LSTM)

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py

  • AutoEncoder

(notebook) aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py

4 – Utilities

  • Save and Restore a model

(notebook) aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/save_restore_model.py

  • Tensorboard – Graph and loss visualization

(notebook)aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_basic.py

  • Tensorboard – Advanced visualization

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_advanced.py

5 – Multi GPU

  • Basic Operations on multi-GPU

(notebook)aymericdamien/TensorFlow-Examples

(code)https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_MultiGPU/multigpu_basics.py

Dataset

Some examples require MNIST dataset for training and testing. Don’t worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

aymericdamien/TensorFlow-Examples

Official Website: http://yann.lecun.com/exdb/mnist/

More Examples

The following examples are coming from TFLearn(tflearn/tflearn)

a library that provides a simplified interface for TensorFlow. You can have a look, there are many examples(tflearn/tflearn) and pre-built operations and layers(Index – TFLearn).

Tutorials

  • TFLearn Quickstart. Learn the basics of TFLearn through a concrete machine learning task. Build and train a deep neural network classifier.

tflearn/tflearn

Basics

  • Linear Regression. Implement a linear regression using TFLearn.

https://github.com/tflearn/tflearn/blob/master/examples/basics/linear_regression.py

  • Logical Operators. Implement logical operators with TFLearn (also includes a usage of ‘merge’).

https://github.com/tflearn/tflearn/blob/master/examples/basics/logical.py

  • Weights Persistence. Save and Restore a model.

https://github.com/tflearn/tflearn/blob/master/examples/basics/weights_persistence.py

  • Fine-Tuning. Fine-Tune a pre-trained model on a new task.

https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py

  • Using HDF5. Use HDF5 to handle large datasets.

https://github.com/tflearn/tflearn/blob/master/examples/basics/use_hdf5.py

  • Using DASK. Use DASK to handle large datasets.

https://github.com/tflearn/tflearn/blob/master/examples/basics/use_dask.py

Computer Vision

  • Multi-layer perceptron. A multi-layer perceptron implementation for MNIST classification task.

https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py

  • Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST dataset.

https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py

  • Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10 dataset.

https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py

  • Network in Network. ‘Network in Network’ implementation for classifying CIFAR-10 dataset.

https://github.com/tflearn/tflearn/blob/master/examples/images/network_in_network.py

  • Alexnet. Apply Alexnet to Oxford Flowers 17 classification task.

https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py

  • VGGNet. Apply VGG Network to Oxford Flowers 17 classification task.

https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network.py

  • VGGNet Finetuning (Fast Training). Use a pre-trained VGG Network and retrain it on your own data, for fast training.

https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network_finetuning.py

  • RNN Pixels. Use RNN (over sequence of pixels) to classify images.

https://github.com/tflearn/tflearn/blob/master/examples/images/rnn_pixels.py

  • Highway Network. Highway Network implementation for classifying MNIST dataset.

https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py

  • Highway Convolutional Network. Highway Convolutional Network implementation for classifying MNIST dataset.

https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_highway_mnist.py

  • Residual Network (MNIST). A bottleneck residual network applied to MNIST classification task.

https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py

  • Residual Network (CIFAR-10). A residual network applied to CIFAR-10 classification task.

https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py

  • Google Inception (v3). Google’s Inception v3 network applied to Oxford Flowers 17 classification task.

https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py

  • Auto Encoder. An auto encoder applied to MNIST handwritten digits.

https://github.com/tflearn/tflearn/blob/master/examples/images/autoencoder.py

Natural Language Processing

  • Recurrent Neural Network (LSTM). Apply an LSTM to IMDB sentiment dataset classification task.

https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm.py

  • Bi-Directional RNN (LSTM). Apply a bi-directional LSTM to IMDB sentiment dataset classification task.

https://github.com/tflearn/tflearn/blob/master/examples/nlp/bidirectional_lstm.py

  • Dynamic RNN (LSTM). Apply a dynamic LSTM to classify variable length text from IMDB dataset.

https://github.com/tflearn/tflearn/blob/master/examples/nlp/dynamic_lstm.py

  • City Name Generation. Generates new US-cities name, using LSTM network.

https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_cityname.py

  • Shakespeare Scripts Generation. Generates new Shakespeare scripts, using LSTM network.

https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_shakespeare.py

  • Seq2seq. Pedagogical example of seq2seq reccurent network. See this repo for full instructions.

https://github.com/tflearn/tflearn/blob/master/examples/nlp/seq2seq_example.py

https://github.com/ichuang/tflearn_seq2seq

  • CNN Seq. Apply a 1-D convolutional network to classify sequence of words from IMDB sentiment dataset.

https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py

Reinforcement Learning

  • Atari Pacman 1-step Q-Learning. Teach a machine to play Atari games (Pacman by default) using 1-step Q-learning.

https://github.com/tflearn/tflearn/blob/master/examples/reinforcement_learning/atari_1step_qlearning.py

Others

  • Recommender – Wide & Deep Network. Pedagogical example of wide & deep networks for recommender systems.

https://github.com/tflearn/tflearn/blob/master/examples/others/recommender_wide_and_deep.py

Notebooks

  • Spiral Classification Problem. TFLearn implementation of spiral classification problem from Stanford CS231n.

tflearn/tflearn

Extending TensorFlow

  • Layers. Use TFLearn layers along with TensorFlow.

https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py

  • Trainer. Use TFLearn trainer class to train any TensorFlow graph.

https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/trainer.py

  • Built-in Ops. Use TFLearn built-in operations along with TensorFlow.

https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/builtin_ops.py

  • Summaries. Use TFLearn summarizers along with TensorFlow.

https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/summaries.py

  • Variables. Use TFLearn variables along with TensorFlow.

https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/variables.py

Dependencies

tensorflow 1.0alpha
numpy
matplotlib
cuda
tflearn (if using tflearn examples)

For more details about TensorFlow installation, you can check TensorFlow Installation Guide

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md

兼职翻译 招聘

《全球人工智能》面向全球招聘多名:图像技术、语音技术、自然语言、机器学习、数据挖掘等专业技术领域的兼职翻译,工作内容及待遇请在公众号内回复“兼职+个人微信号”联系工作人员。

热门文章推荐

恐怖|50 亿条用户隐私信息泄露,嫌犯竟是互联网名企工程师

干货|周志华揭开机器学习本质的57张PPT

重磅|百度PaddlePaddle发布最新API 从三大方面优化了性能

重磅|NVIDIA发布两款”深度神经网络训练”开发者产品:DIGITS 5 和 TensorRT

重磅|“萨德”——不怕!我国的人工智能巡航导弹可破解

重磅|MIT发布脑控机器人:用脑电波(10毫秒分类)纠正机器人错误

重磅|谷歌预言:2029年通过纳米机器人和器官再造 或将实现人类永生

重磅|Messenger bot错误率高达70% Facebook被迫削减AI投资

招聘|腾讯大规模招聘AI开发工程师 年薪30-80W

讨论|周志华教授gcForest论文的价值与技术讨论(微信群)

    原文作者:Mike
    原文地址: https://zhuanlan.zhihu.com/p/25754173
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞