tensorflow机器学习模型上线

以下文章来自刘建平Pinard – 博客园,对tensorflow机器学习模型的跨平台上线学习分享

用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法优化的PMML文件大多数时候很笨拙,因此本文我们专门讨论下tensorflow机器学习模型的跨平台上线的方法。

1. tensorflow模型的跨平台上线的备选方案

tensorflow模型的跨平台上线的备选方案一般有三种:即PMML方式,tensorflow serving方式,以及跨语言API方式。

PMML方式的主要思路在上一篇以及讲过。这里唯一的区别是转化生成PMML文件需要用一个Java库jpmml-tensorflow来完成,生成PMML文件后,跨语言加载模型和其他PMML模型文件基本类似。

tensorflow serving是tensorflow 官方推荐的模型上线预测方式,它需要一个专门的tensorflow服务器,用来提供预测的API服务。如果你的模型和对应的应用是比较大规模的,那么使用tensorflow serving是比较好的使用方式。但是它也有一个缺点,就是比较笨重,如果你要使用tensorflow serving,那么需要自己搭建serving集群并维护这个集群。所以为了一个小的应用去做这个工作,有时候会觉得麻烦。

跨语言API方式是本文要讨论的方式,它会用tensorflow自己的Python API生成模型文件,然后用tensorflow的客户端库比如Java或C++库来做模型的在线预测。下面我们会给一个生成生成模型文件并用tensorflow Java API来做在线预测的例子。

2. 训练模型并生成模型文件

 我们这里给一个简单的逻辑回归并生成逻辑回归tensorflow模型文件的例子。

首先,我们生成了一个6特征,3分类输出的4000个样本数据。

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets.samples_generator import make_classification
import tensorflow as tf
X1, y1 = make_classification(n_samples=4000, n_features=6, n_redundant=0,
                             n_clusters_per_class=1, n_classes=3)

接着我们构建tensorflow的数据流图,这里要注意里面的两个名字,第一个是输入x的名字input,第二个是输出prediction_labels的名字output,这里的这两个名字可以自己取,但是后面会用到,所以要保持一致。

learning_rate = 0.01
training_epochs = 600
batch_size = 100

x = tf.placeholder(tf.float32, [None, 6],name='input') # 6 features
y = tf.placeholder(tf.float32, [None, 3]) # 3 classes

W = tf.Variable(tf.zeros([6, 3]))
b = tf.Variable(tf.zeros([3]))

# softmax回归
pred = tf.nn.softmax(tf.matmul(x, W) + b, name="softmax") 
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

prediction_labels = tf.argmax(pred, axis=1, name="output")

init = tf.global_variables_initializer()

接着就是训练模型了,代码比较简单,毕竟只是一个演示:

sess = tf.Session()
sess.run(init)
y2 = tf.one_hot(y1, 3)
y2 = sess.run(y2)

for epoch in range(training_epochs):

    _, c = sess.run([optimizer, cost], feed_dict={x: X1, y: y2})
 if (epoch+1) % 10 == 0:
 print ("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
 
print ("优化完毕!")
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y2, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
acc = sess.run(accuracy, feed_dict={x: X1, y: y2})
print (acc)

打印输出我这里就不写了,大家可以自己去试一试。接着就是关键的一步,存模型文件了,注意要用convert_variables_to_constants这个API来保存模型,否则模型参数不会随着模型图一起存下来。

graph = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ["output"])
tf.train.write_graph(graph, '.', 'rf.pb', as_text=False)

至此,我们的模型文件rf.pb已经被保存下来了,下面就是要跨平台上线了。 

3. 模型文件在Java平台上线

这里我们以Java平台的模型上线为例,C++的API上线我没有用过,这里就不写了。我们需要引入tensorflow的java库到我们工程的maven或者gradle文件。这里给出maven的依赖如下,版本可以根据实际情况选择一个较新的版本。

        <dependency>
            <groupId>org.tensorflow</groupId>
            <artifactId>tensorflow</artifactId>
            <version>1.7.0</version>
        </dependency>

接着就是代码了,这个代码会比JPMML的要简单,我给出了4个测试样本的预测例子如下,一定要注意的是里面的input和output要和训练模型的时候对应的节点名字一致。

import org.tensorflow.*;
import org.tensorflow.Graph;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;


/**
 * Created by 刘建平pinard on 2018/7/1.
 */
public class TFjavaDemo {
 public static void main(String args[]){
 byte[] graphDef = loadTensorflowModel("D:/rf.pb");
 float inputs[][] = new float[4][6];
 for(int i = 0; i< 4; i++){
 for(int j =0; j< 6;j++){
 if(i<2) {
                    inputs[i][j] = 2 * i - 5 * j - 6;
                }
 else{
                    inputs[i][j] = 2 * i + 5 * j - 6;
                }
            }
        }
        Tensor<Float> input = covertArrayToTensor(inputs);
        Graph g = new Graph();
        g.importGraphDef(graphDef);
        Session s = new Session(g);
        Tensor result = s.runner().feed("input", input).fetch("output").run().get(0);

 long[] rshape = result.shape();
 int rs = (int) rshape[0];
 long realResult[] = new long[rs];
        result.copyTo(realResult);

 for(long a: realResult ) {
            System.out.println(a);
        }
    }
 static private byte[] loadTensorflowModel(String path){
 try {
 return Files.readAllBytes(Paths.get(path));
        } catch (IOException e) {
            e.printStackTrace();
        }
 return null;
    }

 static private Tensor<Float> covertArrayToTensor(float inputs[][]){
 return Tensors.create(inputs);
    }
}

我的预测输出是1,1,0,0,供大家参考。

4. 一点小结

对于tensorflow来说,模型上线一般选择tensorflow serving或者client API库来上线,前者适合于较大的模型和应用场景,后者则适合中小型的模型和应用场景。因此算法工程师使用在产品之前需要做好选择和评估。

    原文作者:漫漫成长
    原文地址: https://zhuanlan.zhihu.com/p/39021723
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞