Python numpy.abs() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def roll_zeropad(a, shift, axis=None):
    a = np.asanyarray(a)
    if shift == 0: return a
    if axis is None:
        n = a.size
        reshape = True
    else:
        n = a.shape[axis]
        reshape = False
    if np.abs(shift) > n:
        res = np.zeros_like(a)
    elif shift < 0:
        shift += n
        zeros = np.zeros_like(a.take(np.arange(n-shift), axis))
        res = np.concatenate((a.take(np.arange(n-shift,n), axis), zeros), axis)
    else:
        zeros = np.zeros_like(a.take(np.arange(n-shift,n), axis))
        res = np.concatenate((zeros, a.take(np.arange(n-shift), axis)), axis)
    if reshape:
        return res.reshape(a.shape)
    else:
        return res 

Example 2

def mypsd(Rates,time_range,bin_w = 5., nmax = 4000):

      bins = np.arange(0,len(time_range),1)
      #print bins
      a,b = np.histogram(Rates, bins)
      ff = (1./len(bins))*abs(np.fft.fft(Rates- np.mean(Rates)))**2
      Fs = 1./(1*0.001)
      freq2 = np.fft.fftfreq(len(bins))[0:len(bins/2)+1] # d= dt
      freq = np.fft.fftfreq(len(bins))[:len(ff)/2+1]
      px = ff[0:len(ff)/2+1]
      max_px = np.max(px[1:])
      idx = px == max_px
      corr_freq = freq[pl.find(idx)]
      new_px = px
      max_pow = new_px[pl.find(idx)]
      return new_px,freq,corr_freq[0],freq2, max_pow 

Example 3

def test_quantize_from_probs2(size, resolution):
    set_random_seed(make_seed(size, resolution))
    probs = np.exp(np.random.random(size)).astype(np.float32)
    probs2 = probs.reshape((1, size))
    quantized = quantize_from_probs2(probs2, resolution)
    assert quantized.shape == probs2.shape
    assert quantized.dtype == np.int8
    assert np.all(quantized.sum(axis=1) == resolution)

    # Check that quantized result is closer to target than any other value.
    quantized = quantized.reshape((size, ))
    target = resolution * probs / probs.sum()
    distance = np.abs(quantized - target).sum()
    for combo in itertools.combinations(range(size), resolution):
        other = np.zeros(size, np.int8)
        for i in combo:
            other[i] += 1
        assert other.sum() == resolution
        other_distance = np.abs(other - target).sum()
        assert distance <= other_distance 

Example 4

def contest(self, b, g, r):
        """ Search for biased BGR values
                Finds closest neuron (min dist) and updates self.freq
                finds best neuron (min dist-self.bias) and returns position
                for frequently chosen neurons, self.freq[i] is high and self.bias[i] is negative
                self.bias[i] = self.GAMMA*((1/self.NETSIZE)-self.freq[i])"""
        i, j = self.SPECIALS, self.NETSIZE
        dists = abs(self.network[i:j] - np.array([b,g,r])).sum(1)
        bestpos = i + np.argmin(dists)
        biasdists = dists - self.bias[i:j]
        bestbiaspos = i + np.argmin(biasdists)
        self.freq[i:j] *= (1-self.BETA)
        self.bias[i:j] += self.BETAGAMMA * self.freq[i:j]
        self.freq[bestpos] += self.BETA
        self.bias[bestpos] -= self.BETAGAMMA
        return bestbiaspos 

Example 5

def Kdim(self, kdimParams):
		if (self.prevKdimParams is not None and np.max(np.abs(kdimParams-self.prevKdimParams)) < self.epsilon): return self.cache['Kdim']
			
		K = np.zeros((self.n, self.n, len(self.kernels)))
		params_ind = 0
		for k_i, k in enumerate(self.kernels):
			numHyp = k.getNumParams()
			kernelParams_range = np.array(xrange(params_ind, params_ind+numHyp), dtype=np.int)			
			kernel_params = kdimParams[kernelParams_range]			
			if ((numHyp == 0 and 'Kdim' in self.cache) or (numHyp>0 and self.prevKdimParams is not None and np.max(np.abs(kernel_params-self.prevKdimParams[kernelParams_range])) < self.epsilon)):
				K[:,:,k_i] = self.cache['Kdim'][:,:,k_i]
			else:
				K[:,:,k_i] = k.getTrainKernel(kernel_params)				
			params_ind += numHyp
		self.prevKdimParams = kdimParams.copy()
		self.cache['Kdim'] = K
		return K 

Example 6

def draw(self, layout='circular', figsize=None):
        """Draw all graphs that describe the DGM in a common figure

        Parameters
        ----------
        layout : str
            possible are 'circular', 'shell', 'spring'
        figsize : tuple(int)
            tuple of two integers denoting the mpl figsize

        Returns
        -------
        fig : figure
        """
        layouts = {
            'circular': nx.circular_layout,
            'shell': nx.shell_layout,
            'spring': nx.spring_layout
        }
        figsize = (10, 10) if figsize is None else figsize
        fig = plt.figure(figsize=figsize)
        rocls = np.ceil(np.sqrt(len(self.graphs)))
        for i, graph in enumerate(self.graphs):
            ax = fig.add_subplot(rocls, rocls, i+1)
            ax.set_title('Graph ' + str(i+1))
            ax.axis('off')
            ax.set_frame_on(False)
            g = graph.nxGraph
            weights = [abs(g.edge[i][j]['weight']) * 5 for i, j in g.edges()]
            nx.draw_networkx(g, pos=layouts[layout](g), ax=ax, edge_cmap=plt.get_cmap('Reds'),
                             width=2, edge_color=weights)
        return fig 

Example 7

def draw(self, layout='circular', figsize=None):
        """Draw graph in a matplotlib environment

        Parameters
        ----------
        layout : str
            possible are 'circular', 'shell', 'spring'
        figsize : tuple(int)
            tuple of two integers denoting the mpl figsize

        Returns
        -------
        fig : figure
        """
        layouts = {
            'circular': nx.circular_layout,
            'shell': nx.shell_layout,
            'spring': nx.spring_layout
        }
        figsize = (10, 10) if figsize is None else figsize
        fig = plt.figure(figsize=figsize)
        ax = fig.add_subplot(1, 1, 1)
        ax.axis('off')
        ax.set_frame_on(False)
        g = self.nxGraph
        weights = [abs(g.edge[i][j]['weight']) * 5 for i, j in g.edges()]
        nx.draw_networkx(g, pos=layouts[layout](g), ax=ax, edge_cmap=plt.get_cmap('Reds'),
                         width=2, edge_color=weights)
        return fig 

Example 8

def scale_variance(Theta, eps):
        """Allows to scale a Precision Matrix such that its
        corresponding covariance has unit variance

        Parameters
        ----------
        Theta: ndarray
            Precision Matrix
        eps: float
            values to threshold to zero

        Returns
        -------
        Theta: ndarray
            Precision of rescaled Sigma
        Sigma: ndarray
            Sigma with ones on diagonal
        """
        Sigma = np.linalg.inv(Theta)
        V = np.diag(np.sqrt(np.diag(Sigma) ** -1))
        Sigma = V.dot(Sigma).dot(V.T)  # = VSV
        Theta = np.linalg.inv(Sigma)
        Theta[np.abs(Theta) <= eps] = 0.
        return Theta, Sigma 

Example 9

def idamax(a):
    """ Returns the index of maximum absolute value (positive or negative)
        in the input array a.

        Note: Loosely based of a subroutine in GAMESS with the same name

        Arguments:
        a -- a numpy array where we are to find the maximum
             value in (either positive or negative)

        Returns:
        the index in the array where the maximum value is.
    """
    idx = -1
    v = 0.0
    for i, value in enumerate(numpy.abs(a)):
        if value > v:
            idx = i
            v = value

    return idx 

Example 10

def idamin(a):
    """ Returns the index of minimum absolute value (positive or negative)
        in the input array a.

        Arguments:
        a -- a numpy array where we are to find the minimum
             value in (either positive or negative)

        Returns:
        the index in the array where the maximum value is.
    """
    idx = -1
    v = 1.0e30
    for i, value in enumerate(numpy.abs(a)):
        if value < v:
            idx = i
            v = value

    return idx 

Example 11

def fCauchy(ftrue, alpha, p):
    """Returns Cauchy model noisy value

    Cauchy with median 1e3*alpha and with p=0.2, zero otherwise

    P(Cauchy > 1,10,100,1000) = 0.25, 0.032, 0.0032, 0.00032

    """
    # expects ftrue to be a np.array
    popsi = np.shape(ftrue)
    fval = ftrue + alpha * np.maximum(0., 1e3 + (_rand(popsi) < p) *
                                          _randn(popsi) / (np.abs(_randn(popsi)) + 1e-199))
    tol = 1e-8
    fval = fval + 1.01 * tol
    idx = ftrue < tol
    try:
        fval[idx] = ftrue[idx]
    except IndexError: # fval is a scalar
        if idx:
            fval = ftrue
    return fval

### CLASS DEFINITION ### 

Example 12

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.xopt[:min(dim, self.maxindex):2] = abs(self.xopt[:min(dim, self.maxindex):2])
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
            self.arrscales = resize(self.scales, curshape) 

Example 13

def _evalfull(self, x):
        fadd = self.fopt
        curshape, dim = self.shape_(x)
        # it is assumed x are row vectors

        if self.lastshape != curshape:
            self.initwithsize(curshape, dim)

        # BOUNDARY HANDLING
        fadd = fadd + self.boundaryhandling(x)

        # TRANSFORMATION IN SEARCH SPACE
        x = x - self.arrxopt # cannot be replaced with x -= arrxopt!
        x = dot(x, self.rotation)

        # COMPUTATION core
        ftrue = np.sqrt(np.sum(np.abs(x) ** self.arrexpo, -1))
        fval = self.noise(ftrue)

        # FINALIZE
        ftrue += fadd
        fval += fadd
        return fval, ftrue 

Example 14

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = 0.5 * sign(unif(dim, self.rseed) - 0.5) * 4.2096874633
            self.scales = (self.condition ** .5) ** np.linspace(0, 1, dim)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(2 * np.abs(self.xopt), curshape)
            self.arrscales = resize(self.scales, curshape)
            self.arrsigns = resize(sign(self.xopt), curshape) 

Example 15

def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False) 

Example 16

def update_measure(self):
        """updated noise level measure using two fitness lists ``self.fit`` and
        ``self.fitre``, return ``self.noiseS, all_individual_measures``.

        Assumes that ``self.idx`` contains the indices where the fitness
        lists differ.

        """
        lam = len(self.fit)
        idx = np.argsort(self.fit + self.fitre)
        ranks = np.argsort(idx).reshape((2, lam))
        rankDelta = ranks[0] - ranks[1] - np.sign(ranks[0] - ranks[1])

        # compute rank change limits using both ranks[0] and ranks[1]
        r = np.arange(1, 2 * lam)  # 2 * lam - 2 elements
        limits = [0.5 * (Mh.prctile(np.abs(r - (ranks[0, i] + 1 - (ranks[0, i] > ranks[1, i]))),
                                      self.theta * 50) +
                         Mh.prctile(np.abs(r - (ranks[1, i] + 1 - (ranks[1, i] > ranks[0, i]))),
                                      self.theta * 50))
                    for i in self.idx]
        # compute measurement
        #                               max: 1 rankchange in 2*lambda is always fine
        s = np.abs(rankDelta[self.idx]) - Mh.amax(limits, 1)  # lives roughly in 0..2*lambda
        self.noiseS += self.cum * (np.mean(s) - self.noiseS)
        return self.noiseS, s 

Example 17

def rho(self, points):
        """ Solves the goodness of fit.
        """
        assert self._solved, 'you need to solve first.'

        m, n = self.A.shape
        #numer = [ np.abs(np.dot(self.c, point) - np.dot(self.dual, self.b)) / np.abs(np.dot(self.dual, self.b)) for point in points ]
        numer = [np.abs(np.dot(self.c, point) - 1) for point in points]
        numer = sum(numer)
        denom = 0
        for i in range(m):
            #denomTerm = [ np.abs(np.dot(self.A[i], point) - self.b[i]) / np.abs(self.b[i]) for point in points ]
            denomTerm = [
                np.abs(
                    np.dot(self.A[i] / np.linalg.norm(
                        self.A[i].T, self.normalize_c), point) - 1)
                for point in points
            ]
            denom += sum(denomTerm)
        rho = 1 - numer / denom
        return rho[0, 0] 

Example 18

def rho(self, points):
        """ Solves the goodness of fit.
        """
        assert self._solved, 'you need to solve first.'

        m, n = self.A.shape
        numer = [
            np.abs(np.dot(self.c, point) - np.dot(self.dual, self.b))
            for point in points
        ]
        numer = sum(numer)
        denom = 0
        for i in range(m):
            denomTerm = [
                np.abs(np.dot(self.A[i], point) - self.b[i]) / np.linalg.norm(
                    self.A[i].T, self.normalize_c) for point in points
            ]
            denom += sum(denomTerm)
        rho = 1 - numer / denom
        return rho[0, 0] 

Example 19

def find_outliers(data):
    absolute_normalized = np.abs(zscore(data))
    return absolute_normalized > 3 

Example 20

def genplot(x, y, fit, xdata=None, ydata=None, maxpts=10000):
    bin_range = (0, 360)
    a = (np.arange(*bin_range))
    f_a = nuth_func(a, fit[0], fit[1], fit[2])
    nuth_func_str = r'$y=%0.2f*cos(%0.2f-x)+%0.2f$' % tuple(fit)
    if xdata.size > maxpts:
        import random
        idx = random.sample(list(range(xdata.size)), 10000)
    else:
        idx = np.arange(xdata.size)
    f, ax = plt.subplots()
    ax.set_xlabel('Aspect (deg)')
    ax.set_ylabel('dh/tan(slope) (m)')
    ax.plot(xdata[idx], ydata[idx], 'k.', label='Orig pixels')
    ax.plot(x, y, 'ro', label='Bin median')
    ax.axhline(color='k')
    ax.plot(a, f_a, 'b', label=nuth_func_str)
    ax.set_xlim(*bin_range)
    pad = 0.2 * np.max([np.abs(y.min()), np.abs(y.max())])
    ax.set_ylim(y.min() - pad, y.max() + pad)
    ax.legend(prop={'size':8})
    return f 

#Function copied from from openPIV pyprocess 

Example 21

def update(self, params, grads):
        # init
        self.iterations += 1
        a_t = self.lr / (1 - np.power(self.beta1, self.iterations))
        if self.ms is None:
            self.ms = [_zero(p.shape) for p in params]
        if self.vs is None:
            self.vs = [_zero(p.shape) for p in params]

        # update parameters
        for i, (m, v, p, g) in enumerate(zip(self.ms, self.vs, params, grads)):
            m = self.beta1 * m + (1 - self.beta1) * g
            v = np.maximum(self.beta2 * v, np.abs(g))
            p -= a_t * m / (v + self.epsilon)

            self.ms[i] = m
            self.vs[i] = v 

Example 22

def resize_image(image,target_shape, pad_value = 0):
    assert isinstance(target_shape, list) or isinstance(target_shape, tuple)
    add_shape, subs_shape = [], []

    image_shape = image.shape
    shape_difference = np.asarray(target_shape, dtype=int) - np.asarray(image_shape,dtype=int)
    for diff in shape_difference:
        if diff < 0:
            subs_shape.append(np.s_[int(np.abs(np.ceil(diff/2))):int(np.floor(diff/2))])
            add_shape.append((0, 0))
        else:
            subs_shape.append(np.s_[:])
            add_shape.append((int(np.ceil(1.0*diff/2)),int(np.floor(1.0*diff/2))))
    output = np.pad(image, tuple(add_shape), 'constant', constant_values=(pad_value, pad_value))
    output = output[subs_shape]
    return output 

Example 23

def __test_ks(self,x):
        x = x[~np.isnan(x)]
        n = x.size
        x.sort()
        yCDF = np.arange(1,n+1)/float(n)
        notdup = np.hstack([np.diff(x,1),[1]])
        notdup = notdup>0
        x_expcdf = x[notdup]
        y_expcdf = np.hstack([[0],yCDF[notdup]])
        zScores = (x_expcdf-np.mean(x))/np.std(x,ddof=1);
        mu = 0
        sigma = 1
        theocdf = 0.5*erfc(-(zScores-mu)/(np.sqrt(2)*sigma))

        delta1 = y_expcdf[:-1]-theocdf
        delta2 = y_expcdf[1:]-theocdf
        deltacdf = np.abs(np.hstack([delta1,delta2]))
        KSmax = deltacdf.max()
        return KSmax 

Example 24

def __test_ks(self,x):
        x = x[~np.isnan(x)]
        n = x.size
        x.sort()
        yCDF = np.arange(1,n+1)/float(n)
        notdup = np.hstack([np.diff(x,1),[1]])
        notdup = notdup>0
        x_expcdf = x[notdup]
        y_expcdf = np.hstack([[0],yCDF[notdup]])
        zScores = (x_expcdf-np.mean(x))/np.std(x,ddof=1);
        mu = 0
        sigma = 1
        theocdf = 0.5*erfc(-(zScores-mu)/(np.sqrt(2)*sigma))

        delta1 = y_expcdf[:-1]-theocdf
        delta2 = y_expcdf[1:]-theocdf
        deltacdf = np.abs(np.hstack([delta1,delta2]))
        KSmax = deltacdf.max()
        return KSmax 

Example 25

def verify_result(result, expected, float_cmp, debug):
    if not isinstance(result, pd.core.series.Series):
        if result == expected:
            print('TEST OK')
            return
        else:
            print('TEST Failed.')
            return
    result = result.dropna()
    expected = expected.dropna()
    if debug:
        print('RESULT:')
        print(result)
        print('EXPECTED:')
        print(expected)
    if float_cmp:
        cmp = (np.abs(result - expected) < 2.631048e-06)
    else:
        cmp = (result == expected)
    if len(cmp[cmp == False]) > 0 :
        print('TEST Failed.')
        return
    print('TEST OK.')
    return 

Example 26

def Saliency_map(image,model,preprocess,ground_truth,use_gpu=False,method=util.GradType.GUIDED):
    vis_param_dict['method'] = method
    img_tensor = preprocess(image)
    img_tensor.unsqueeze_(0)
    if use_gpu:
        img_tensor=img_tensor.cuda()
    input = Variable(img_tensor,requires_grad=True)
    
    if  input.grad is not None:
        input.grad.data.zero_()
    
    model.zero_grad()
    output = model(input)
    ind=torch.LongTensor(1)
    if(isinstance(ground_truth,np.int64)):
        ground_truth=np.asscalar(ground_truth)
    ind[0]=ground_truth
    ind=Variable(ind)
    energy=output[0,ground_truth]
    energy.backward() 
    grad=input.grad
    if use_gpu:
        return np.abs(grad.data.cpu().numpy()[0]).max(axis=0)
    return np.abs(grad.data.numpy()[0]).max(axis=0) 

Example 27

def nufft_scale1(N, K, alpha, beta, Nmid):
    '''
    calculate image space scaling factor
    '''
#     import types
#     if alpha is types.ComplexType:
    alpha = numpy.real(alpha)
#         print('complex alpha may not work, but I just let it as')

    L = len(alpha) - 1
    if L > 0:
        sn = numpy.zeros((N, 1))
        n = numpy.arange(0, N).reshape((N, 1), order='F')
        i_gam_n_n0 = 1j * (2 * numpy.pi / K) * (n - Nmid) * beta
        for l1 in range(-L, L + 1):
            alf = alpha[abs(l1)]
            if l1 < 0:
                alf = numpy.conj(alf)
            sn = sn + alf * numpy.exp(i_gam_n_n0 * l1)
    else:
        sn = numpy.dot(alpha, numpy.ones((N, 1), dtype=numpy.float32))
    return sn 

Example 28

def nufft_T(N, J, K, alpha, beta):
    '''
     equation (29) and (26)Fessler's paper
     create the overlapping matrix CSSC (diagonal dominent matrix)
     of J points
     and then find out the pseudo-inverse of CSSC '''

#     import scipy.linalg
    L = numpy.size(alpha) - 1
#     print('L = ', L, 'J = ',J, 'a b', alpha,beta )
    cssc = numpy.zeros((J, J))
    [j1, j2] = numpy.mgrid[1:J + 1, 1:J + 1]
    overlapping_mat = j2 - j1

    for l1 in range(-L, L + 1):
        for l2 in range(-L, L + 1):
            alf1 = alpha[abs(l1)]
#             if l1 < 0: alf1 = numpy.conj(alf1)
            alf2 = alpha[abs(l2)]
#             if l2 < 0: alf2 = numpy.conj(alf2)
            tmp = overlapping_mat + beta * (l1 - l2)

            tmp = dirichlet(1.0 * tmp / (1.0 * K / N))
            cssc = cssc + alf1 * numpy.conj(alf2) * tmp
    return mat_inv(cssc) 

Example 29

def fit(self, X, y=None):
        old_threshold = None
        threshold = None
        self.threshold_ = 0.0

        self._fit(X,y)

        count = 0
        while count < 100 and (old_threshold is None or abs(threshold - old_threshold) > 0.01):
            old_threshold = threshold
            ss = self.decision_function(X,y)
            threshold = percentile(ss, 100 * self.contamination)

            self._fit(X[ss > threshold],y[ss > threshold] if y is not None else None)

            count += 1

        self.threshold_ = threshold

        return self 

Example 30

def round_solution_pool(pool, constraints):

    pool.distinct().sort()
    P = pool.P
    L0_reg_ind = np.isnan(constraints['coef_set'].C_0j)
    L0_max = constraints['L0_max']
    rounded_pool = SolutionPool(P)

    for solution in pool.solutions:
        # sort from largest to smallest coefficients
        feature_order = np.argsort([-abs(x) for x in solution])
        rounded_solution = np.zeros(shape=(1, P))
        l0_norm_count = 0
        for k in range(0, P):
            j = feature_order[k]
            if not L0_reg_ind[j]:
                rounded_solution[0, j] = np.round(solution[j], 0)
            elif l0_norm_count < L0_max:
                rounded_solution[0, j] = np.round(solution[j], 0)
                l0_norm_count += L0_reg_ind[j]

        rounded_pool.add(objvals=np.nan, solutions=rounded_solution)

    rounded_pool.distinct().sort()
    return rounded_pool 

Example 31

def a_metric (solution, prediction, task='regression'):
    ''' 1 - Mean absolute error divided by mean absolute deviation '''
    mae = mvmean(np.abs(solution-prediction))         # mean absolute error
    mad = mvmean(np.abs(solution-mvmean(solution))) # mean absolute deviation
    score = 1 - mae / mad
    return mvmean(score)
 
### END REGRESSION METRICS 

### CLASSIFICATION METRICS (work on solutions in {0, 1} and predictions in [0, 1])
# These can be computed for regression scores only after running normalize_array 

Example 32

def pac_metric (solution, prediction, task='binary.classification'):
    ''' Probabilistic Accuracy based on log_loss metric. 
    We assume the solution is in {0, 1} and prediction in [0, 1].
    Otherwise, run normalize_array.''' 
    debug_flag=False
    [sample_num, label_num] = solution.shape
    if label_num==1: task='binary.classification'
    eps = 1e-15
    the_log_loss = log_loss(solution, prediction, task)
    # Compute the base log loss (using the prior probabilities)    
    pos_num = 1.* sum(solution) # float conversion!
    frac_pos = pos_num / sample_num # prior proba of positive class
    the_base_log_loss = prior_log_loss(frac_pos, task)
    # Alternative computation of the same thing (slower)    
    # Should always return the same thing except in the multi-label case
    # For which the analytic solution makes more sense
    if debug_flag:
        base_prediction = np.empty(prediction.shape)
        for k in range(sample_num): base_prediction[k,:] = frac_pos
        base_log_loss = log_loss(solution, base_prediction, task)  
        diff = np.array(abs(the_base_log_loss-base_log_loss))
        if len(diff.shape)>0: diff=max(diff)
        if(diff)>1e-10: 
            print('Arrggh {} != {}'.format(the_base_log_loss,base_log_loss))
    # Exponentiate to turn into an accuracy-like score.
    # In the multi-label case, we need to average AFTER taking the exp 
    # because it is an NL operation
    pac = mvmean(np.exp(-the_log_loss)) 
    base_pac = mvmean(np.exp(-the_base_log_loss))
    # Normalize: 0 for random, 1 for perfect    
    score = (pac - base_pac) / sp.maximum(eps, (1 - base_pac))
    return score 

Example 33

def a_score_(solution, prediction):
	mad = float(mvmean(abs(solution-mvmean(solution)))) 
	return 1 - metrics.mean_absolute_error(solution, prediction)/mad 

Example 34

def build_data_auto_encoder(data, step, win_size):
    count = data.shape[1] / float(step)
    docX = np.zeros((count, 3, win_size))

    for i in range(0, data.shape[1] - win_size, step):
        c = i / step
        docX[c][0] = np.abs(data[0, i:i + win_size] - data[1, i:i + win_size])
        docX[c][1] = np.power(data[0, i:i + win_size] - data[1, i:i + win_size], 2)
        docX[c][2] = np.pad(
            (data[0, i:i + win_size - 1] - data[0, i + 1:i + win_size]) * (data[1, i:i + win_size - 1] - data[1, i + 1:i + win_size]),
            (0, 1), 'constant', constant_values=0)
    data = np.dstack((docX[:, 0], docX[:, 1], docX[:, 2])).reshape(docX.shape[0], docX.shape[1]*docX.shape[2])

    return data 

Example 35

def reject_outliers(data, m = 2.):
    d = np.abs(data - np.median(data))
    mdev = np.median(d)
    s = d/mdev if mdev else 0.
    return data[s<m] 

Example 36

def get_line_region(self, position, name=''):
        """Creates a line region at the given position (start_x, start_y, end_x, end_y),
        inclusive.

        Args:
            position: Position of the line region (start_x, start_y, end_x, end_y).
            name: Name of the region.

        Returns:
            Line region.
        """

        start_idx = self.get_index(position[:2])
        end_idx = self.get_index(position[2:])

        x_diff = start_idx % self.x.samples - end_idx % self.x.samples
        y_diff = int(start_idx / self.x.samples) - int(end_idx / self.x.samples)

        num_points = max(np.abs([x_diff, y_diff]))
        point_indices = []

        for ii in range(num_points + 1):

            x_position = start_idx % self.x.samples - np.round(ii / num_points * x_diff)
            y_position = int(start_idx / self.x.samples) - np.round(ii / num_points * y_diff)
            point_indices.append(int(x_position + self.x.samples * y_position))

        return reg.LineRegion(point_indices, position, name=name) 

Example 37

def get_index(self, value):
        """Returns the index of a given value.

        Args:
            value: Value the index requested for.

        Returns:
            Index.
        """

        index, = np.where(np.abs(self.vector - value) <= self.snap_radius)
        assert len(index) < 2, "Multiple points found within snap radius of given value."
        assert len(index) > 0, "No point found within snap radius of given value."

        return int(index) 

Example 38

def alterneigh(self, alpha, rad, i, b, g, r):
        if i-rad >= self.SPECIALS-1:
            lo = i-rad
            start = 0
        else:
            lo = self.SPECIALS-1
            start = (self.SPECIALS-1 - (i-rad))

        if i+rad <= self.NETSIZE:
            hi = i+rad
            end = rad*2-1
        else:
            hi = self.NETSIZE
            end = (self.NETSIZE - (i+rad))

        a = self.geta(alpha, rad)[start:end]

        p = self.network[lo+1:hi]
        p -= np.transpose(np.transpose(p - np.array([b, g, r])) * a)

    #def contest(self, b, g, r):
    #    """ Search for biased BGR values
    #            Finds closest neuron (min dist) and updates self.freq
    #            finds best neuron (min dist-self.bias) and returns position
    #            for frequently chosen neurons, self.freq[i] is high and self.bias[i] is negative
    #            self.bias[i] = self.GAMMA*((1/self.NETSIZE)-self.freq[i])"""
    #
    #    i, j = self.SPECIALS, self.NETSIZE
    #    dists = abs(self.network[i:j] - np.array([b,g,r])).sum(1)
    #    bestpos = i + np.argmin(dists)
    #    biasdists = dists - self.bias[i:j]
    #    bestbiaspos = i + np.argmin(biasdists)
    #    self.freq[i:j] -= self.BETA * self.freq[i:j]
    #    self.bias[i:j] += self.BETAGAMMA * self.freq[i:j]
    #    self.freq[bestpos] += self.BETA
    #    self.bias[bestpos] -= self.BETAGAMMA
    #    return bestbiaspos 

Example 39

def calc_scores(self, lag):
        data    = self.raw_data[:, abs(self.raw_lags) <= lag]
        control = self.raw_control
        score  = self.overlap[self.pairs[:, 0], self.pairs[:, 1]]
        score2 = control - data.mean(axis=1)
        score3 = control
        return score, score2, score3 

Example 40

def data_tooltip(self, x, y):
        row = int(y)
        if row >= 0 and row < len(self.raw_data):
            all_raw_data = self.raw_data
            data_idx     = self.sort_idcs[row]
            lag_diff     = np.abs(x - self.raw_lags)
            nearest_lag_idx = np.argmin(lag_diff)
            nearest_lag = self.raw_lags[nearest_lag_idx]
            value = all_raw_data[data_idx, nearest_lag_idx]
            return ('%.2f - lag: %.2fms (template similarity: %.2f  '
                    'CC metric %.2f)') % (value, nearest_lag,
                                                         self.score_x[data_idx],
                                                         self.score_y[data_idx])
        else:
            return '' 

Example 41

def update_statusbar(self, event):
        # Update information about the mouse position to the status bar
        status_bar = self.statusbar
        if event.inaxes == self.electrode_ax:
            status_bar.showMessage(u'x: %.0f?m  y: %.0f?m' % (event.xdata, event.ydata))
        elif event.inaxes == self.data_x:
            yspacing = numpy.max(np.abs(self.data))*1.05
            if yspacing != 0:
                row = int((event.ydata + 0.5*yspacing)/yspacing)
            else:
                row = int((event.ydata))
            if row < 0 or row >= len(self.inspect_points):
                status_bar.clearMessage()
            else:
                time_idx = np.argmin(np.abs(self.time - event.xdata))
                start_idx = np.argmin(np.abs(self.time - self.t_start))
                rel_time_idx = time_idx - start_idx
                electrode_idx = self.inspect_points[row]
                electrode_x, electrode_y = self.points[electrode_idx]
                data = self.data[rel_time_idx, electrode_idx]
                msg = '%.2f' % data
                if self.show_fit:
                    fit = self.curve[electrode_idx, rel_time_idx]
                    msg += ' (fit: %.2f)' % fit
                msg += '  t: %.2fs ' % self.time[time_idx]
                msg += u'(electrode %d at x: %.0f?m  y: %.0f?m)' % (electrode_idx, electrode_x, electrode_y)
                status_bar.showMessage(msg) 

Example 42

def sameParams(self, params, i=None):
		if (self.prevParams is None): return False
		if (i is None): return (np.max(np.abs(params-self.prevParams)) < self.epsilon)
		return ((np.abs(params[i]-self.prevParams[i])) < self.epsilon) 

Example 43

def getEE(self, EEParams):
		if (self.prevEEParams is not None):
			if (EEParams.shape[0] == 0 or np.max(np.abs(EEParams-self.prevEEParams < self.epsilon))): return self.cache['EE']
		Kd = self.Kdim(EEParams)
		EE = elsympol(Kd, len(self.kernels))		
		self.prevEEParams = EEParams.copy()
		self.cache['EE'] = EE
		return EE 

Example 44

def getScaledE(self, params, i, E):		
		if (self.prevHyp0Params is not None and np.abs(self.prevHyp0Params[i]-params[i]) < self.epsilon): return self.cache['E_scaled'][i]		
		if ('E_scaled' not in self.cache.keys()): self.cache['E_scaled'] = [None for j in xrange(len(self.kernels))]
		
		for j in xrange(len(self.kernels)):
			if (self.prevHyp0Params is not None and np.abs(self.prevHyp0Params[j]-params[j]) < self.epsilon): continue		
			E_scaled = E[:,:,j+1]*np.exp(2*params[j])
			self.cache['E_scaled'][j] = E_scaled
			
		self.prevHyp0Params = params.copy()		
		return self.cache['E_scaled'][i] 

Example 45

def __init__(self, X, pos):
		Kernel.__init__(self)
		self.X_scaled = X/np.sqrt(X.shape[1])
		d = pos.shape[0]
		self.D = np.abs(np.tile(np.column_stack(pos).T, (1, d)) - np.tile(pos, (d, 1))) / 100000.0 

Example 46

def __init__(self, X, pos):
		Kernel.__init__(self)
		self.X_scaled = X/np.sqrt(X.shape[1])
		d = pos.shape[0]
		self.D = np.abs(np.tile(np.column_stack(pos).T, (1, d)) - np.tile(pos, (d, 1))) / 100000.0 

Example 47

def __init__(self, X, pos):
		Kernel.__init__(self)
		self.X_scaled = X/np.sqrt(X.shape[1])
		d = pos.shape[0]
		self.D = np.abs(np.tile(np.column_stack(pos).T, (1, d)) - np.tile(pos, (d, 1))) / 100000.0 

Example 48

def AorthogonalityCheck(A, U, d):
    """
    Test the frobenious norm of  D^{-1}(U^TAU) - I_k
    """
    V = np.zeros(U.shape)
    AV = np.zeros(U.shape)
    Av = Vector()
    v = Vector()
    A.init_vector(Av,0)
    A.init_vector(v,1)
    
    nvec  = U.shape[1]
    for i in range(0,nvec):
        v.set_local(U[:,i])
        v *= 1./math.sqrt(d[i])
        A.mult(v,Av)
        AV[:,i] = Av.get_local()
        V[:,i] = v.get_local()
        
    VtAV = np.dot(V.T, AV)    
    err = VtAV - np.eye(nvec, dtype=VtAV.dtype)
    
#    plt.imshow(np.abs(err))
#    plt.colorbar()
#    plt.show()
    
    print("i, ||Vt(i,:)AV(:,i) - I_i||_F, V[:,i] = 1/sqrt(lambda_i) U[:,i]")
    for i in range(1,nvec+1):
        print(i, np.linalg.norm(err[0:i,0:i], 'fro') ) 

Example 49

def load_scan(path):
    slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
    #slices.sort(key = lambda x: int(x.InstanceNumber))
       
    acquisitions = [x.AcquisitionNumber for x in slices]
    
    vals, counts = np.unique(acquisitions, return_counts=True)
    vals = vals[::-1]  # reverse order so the later acquisitions are first (the np.uniques seems to always return the ordered 1 2 etc.
    counts = counts[::-1]
    
    ## take the acquistions that has more entries; if these are identical take the later  entrye
    acq_val_sel = vals[np.argmax(counts)]
  

    ##acquisitions = sorted(np.unique(acquisitions), reverse=True)
    
    if len(vals) > 1:
        print ("WARNING ##########: MULTIPLE acquisitions & counts, acq_val_sel, path: ", vals, counts, acq_val_sel, path)
    slices2= [x for x in slices if x.AcquisitionNumber == acq_val_sel]
    
    slices = slices2
    
   
    ## ONE path includes 2 acquisitions (2 sets), take the latter acquiisiton only whihch cyupically is better than the first/previous ones.
    ## example of the     '../input/stage1/b8bb02d229361a623a4dc57aa0e5c485'
    
    #slices.sort(key = lambda x: int(x.ImagePositionPatient[2]))  # from v 8, BUG should be float
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from v 9
    try:
        slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2])
    except:
        slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation)
        
    for s in slices:
        s.SliceThickness = slice_thickness
        
    return slices 

Example 50

def load_scan(path):
    slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
    #slices.sort(key = lambda x: int(x.InstanceNumber))
    #slices.sort(key = lambda x: int(x.ImagePositionPatient[2]))  # from v 8 - BUGGY (should be float caused issues with segmenting and rescaling ....
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from v 8
    try:
        slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2])
    except:
        slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation)
        
    for s in slices:
        s.SliceThickness = slice_thickness
        
    return slices 
点赞