The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def test_sort_tensor_by_length(self): tensor = torch.rand([5, 7, 9]) tensor[0, 3:, :] = 0 tensor[1, 4:, :] = 0 tensor[2, 1:, :] = 0 tensor[3, 5:, :] = 0 tensor = Variable(tensor) sequence_lengths = Variable(torch.LongTensor([3, 4, 1, 5, 7])) sorted_tensor, sorted_lengths, reverse_indices, _ = util.sort_batch_by_length(tensor, sequence_lengths) # Test sorted indices are padded correctly. numpy.testing.assert_array_equal(sorted_tensor[1, 5:, :].data.numpy(), 0.0) numpy.testing.assert_array_equal(sorted_tensor[2, 4:, :].data.numpy(), 0.0) numpy.testing.assert_array_equal(sorted_tensor[3, 3:, :].data.numpy(), 0.0) numpy.testing.assert_array_equal(sorted_tensor[4, 1:, :].data.numpy(), 0.0) assert sorted_lengths.data.equal(torch.LongTensor([7, 5, 4, 3, 1])) # Test restoration indices correctly recover the original tensor. assert sorted_tensor.index_select(0, reverse_indices).data.equal(tensor.data)
Example 2
def test_weighted_sum_handles_3d_attention_with_3d_matrix(self): batch_size = 1 length_1 = 5 length_2 = 2 embedding_dim = 4 sentence_array = numpy.random.rand(batch_size, length_2, embedding_dim) attention_array = numpy.random.rand(batch_size, length_1, length_2) sentence_tensor = Variable(torch.from_numpy(sentence_array).float()) attention_tensor = Variable(torch.from_numpy(attention_array).float()) aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy() assert aggregated_array.shape == (batch_size, length_1, embedding_dim) for i in range(length_1): expected_array = (attention_array[0, i, 0] * sentence_array[0, 0] + attention_array[0, i, 1] * sentence_array[0, 1]) numpy.testing.assert_almost_equal(aggregated_array[0, i], expected_array, decimal=5)
Example 3
def test_batched_index_select(self): indices = numpy.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # Each element is a vector of it's index. targets = torch.ones([2, 10, 3]).cumsum(1) - 1 # Make the second batch double it's index so they're different. targets[1, :, :] *= 2 indices = Variable(torch.LongTensor(indices)) targets = Variable(targets) selected = util.batched_index_select(targets, indices) assert list(selected.size()) == [2, 2, 2, 3] ones = numpy.ones([3]) numpy.testing.assert_array_equal(selected[0, 0, 0, :].data.numpy(), ones) numpy.testing.assert_array_equal(selected[0, 0, 1, :].data.numpy(), ones * 2) numpy.testing.assert_array_equal(selected[0, 1, 0, :].data.numpy(), ones * 3) numpy.testing.assert_array_equal(selected[0, 1, 1, :].data.numpy(), ones * 4) numpy.testing.assert_array_equal(selected[1, 0, 0, :].data.numpy(), ones * 10) numpy.testing.assert_array_equal(selected[1, 0, 1, :].data.numpy(), ones * 12) numpy.testing.assert_array_equal(selected[1, 1, 0, :].data.numpy(), ones * 14) numpy.testing.assert_array_equal(selected[1, 1, 1, :].data.numpy(), ones * 16)
Example 4
def test_process_image(compress, out_dir): numpy.random.seed(8) image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16) meta = { "DNA": "/User/jcaciedo/LUAD/dna.tiff", "ER": "/User/jcaciedo/LUAD/er.tiff", "Mito": "/User/jcaciedo/LUAD/mito.tiff" } compress.stats["illum_correction_function"] = numpy.ones((16,16,3)) compress.stats["upper_percentiles"] = [255, 255, 255] compress.stats["lower_percentiles"] = [0, 0, 0] compress.process_image(0, image, meta) filenames = glob.glob(os.path.join(out_dir,"*")) real_filenames = [os.path.join(out_dir, x) for x in ["dna.png", "er.png", "mito.png"]] filenames.sort() assert real_filenames == filenames for i in range(3): data = scipy.misc.imread(filenames[i]) numpy.testing.assert_array_equal(image[:,:,i], data)
Example 5
def test_apply(corrector): image = numpy.random.randint(256, size=(24, 24, 3), dtype=numpy.uint16) illum_corr_func = numpy.random.rand(24, 24, 3) illum_corr_func /= illum_corr_func.min() corrector.illum_corr_func = illum_corr_func corrected = corrector.apply(image) expected = image / illum_corr_func assert corrected.shape == (24, 24, 3) numpy.testing.assert_array_equal(corrected, expected)
Example 6
def test_forward_probability2(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() fp = 2**model._forward_probability(seq) # examples in wikipedia are normalized fp = (fp.T / fp.sum(axis=1)).T wikipedia_results = [ [0.8182, 0.1818], [0.8834, 0.1166], [0.1907, 0.8093], [0.7308, 0.2692], [0.8673, 0.1327], ] assert_array_almost_equal(wikipedia_results, fp, 4)
Example 7
def test_backward_probability(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() bp = 2**model._backward_probability(seq) # examples in wikipedia are normalized bp = (bp.T / bp.sum(axis=1)).T wikipedia_results = [ # Forward-backward algorithm doesn't need b0_5, # so .backward_probability doesn't compute it. # [0.6469, 0.3531], [0.5923, 0.4077], [0.3763, 0.6237], [0.6533, 0.3467], [0.6273, 0.3727], [0.5, 0.5], ] assert_array_almost_equal(wikipedia_results, bp, 4)
Example 8
def test_forward_probability2(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() fp = 2**model._forward_probability(seq) # examples in wikipedia are normalized fp = (fp.T / fp.sum(axis=1)).T wikipedia_results = [ [0.8182, 0.1818], [0.8834, 0.1166], [0.1907, 0.8093], [0.7308, 0.2692], [0.8673, 0.1327], ] assert_array_almost_equal(wikipedia_results, fp, 4)
Example 9
def test_backward_probability(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() bp = 2**model._backward_probability(seq) # examples in wikipedia are normalized bp = (bp.T / bp.sum(axis=1)).T wikipedia_results = [ # Forward-backward algorithm doesn't need b0_5, # so .backward_probability doesn't compute it. # [0.6469, 0.3531], [0.5923, 0.4077], [0.3763, 0.6237], [0.6533, 0.3467], [0.6273, 0.3727], [0.5, 0.5], ] assert_array_almost_equal(wikipedia_results, bp, 4)
Example 10
def test_forward_probability2(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() fp = 2**model._forward_probability(seq) # examples in wikipedia are normalized fp = (fp.T / fp.sum(axis=1)).T wikipedia_results = [ [0.8182, 0.1818], [0.8834, 0.1166], [0.1907, 0.8093], [0.7308, 0.2692], [0.8673, 0.1327], ] assert_array_almost_equal(wikipedia_results, fp, 4)
Example 11
def test_backward_probability(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() bp = 2**model._backward_probability(seq) # examples in wikipedia are normalized bp = (bp.T / bp.sum(axis=1)).T wikipedia_results = [ # Forward-backward algorithm doesn't need b0_5, # so .backward_probability doesn't compute it. # [0.6469, 0.3531], [0.5923, 0.4077], [0.3763, 0.6237], [0.6533, 0.3467], [0.6273, 0.3727], [0.5, 0.5], ] assert_array_almost_equal(wikipedia_results, bp, 4)
Example 12
def test_log_bf(): import numpy.testing as test sep = numpy.array([0., 0.1, 0.2, 0.3, 0.4, 0.5]) for psi in sep: print(psi) print(' ', log_bf2(psi, 0.1, 0.2), ) print(' ', log_bf([[None, psi]], [0.1, 0.2]), ) test.assert_almost_equal(log_bf2(psi, 0.1, 0.2), log_bf([[None, psi]], [0.1, 0.2])) for psi in sep: print(psi) bf3 = log_bf3(psi, psi, psi, 0.1, 0.2, 0.3) print(' ', bf3) g = log_bf([[None, psi, psi], [psi, None, psi], [psi, psi, None]], [0.1, 0.2, 0.3]) print(' ', g) test.assert_almost_equal(bf3, g) q = numpy.zeros(len(sep)) print(log_bf(numpy.array([[numpy.nan + sep, sep, sep], [sep, numpy.nan + sep, sep], [sep, sep, numpy.nan + sep]]), [0.1 + q, 0.2 + q, 0.3 + q]))
Example 13
def test_forward_probability2(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() fp = 2**model._forward_probability(seq) # examples in wikipedia are normalized fp = (fp.T / fp.sum(axis=1)).T wikipedia_results = [ [0.8182, 0.1818], [0.8834, 0.1166], [0.1907, 0.8093], [0.7308, 0.2692], [0.8673, 0.1327], ] assert_array_almost_equal(wikipedia_results, fp, 4)
Example 14
def test_backward_probability(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() bp = 2**model._backward_probability(seq) # examples in wikipedia are normalized bp = (bp.T / bp.sum(axis=1)).T wikipedia_results = [ # Forward-backward algorithm doesn't need b0_5, # so .backward_probability doesn't compute it. # [0.6469, 0.3531], [0.5923, 0.4077], [0.3763, 0.6237], [0.6533, 0.3467], [0.6273, 0.3727], [0.5, 0.5], ] assert_array_almost_equal(wikipedia_results, bp, 4)
Example 15
def test_warning_calls(): # combined "ignore" and stacklevel error base = Path(numpy.__file__).parent for path in base.rglob("*.py"): if base / "testing" in path.parents: continue if path == base / "__init__.py": continue if path == base / "random" / "__init__.py": continue # use tokenize to auto-detect encoding on systems where no # default encoding is defined (e.g. LANG='C') with tokenize.open(str(path)) as file: tree = ast.parse(file.read()) FindFuncs(path).visit(tree)
Example 16
def test_forward_probability2(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() fp = 2**model._forward_probability(seq) # examples in wikipedia are normalized fp = (fp.T / fp.sum(axis=1)).T wikipedia_results = [ [0.8182, 0.1818], [0.8834, 0.1166], [0.1907, 0.8093], [0.7308, 0.2692], [0.8673, 0.1327], ] assert_array_almost_equal(wikipedia_results, fp, 4)
Example 17
def test_backward_probability(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() bp = 2**model._backward_probability(seq) # examples in wikipedia are normalized bp = (bp.T / bp.sum(axis=1)).T wikipedia_results = [ # Forward-backward algorithm doesn't need b0_5, # so .backward_probability doesn't compute it. # [0.6469, 0.3531], [0.5923, 0.4077], [0.3763, 0.6237], [0.6533, 0.3467], [0.6273, 0.3727], [0.5, 0.5], ] assert_array_almost_equal(wikipedia_results, bp, 4)
Example 18
def test_diag(self): # test that it builds a matrix with given diagonal when using # vector inputs x = theano.tensor.vector() y = diag(x) assert y.owner.op.__class__ == AllocDiag # test that it extracts the diagonal when using matrix input x = theano.tensor.matrix() y = extract_diag(x) assert y.owner.op.__class__ == ExtractDiag # other types should raise error x = theano.tensor.tensor3() ok = False try: y = extract_diag(x) except TypeError: ok = True assert ok # not testing the view=True case since it is not used anywhere.
Example 19
def test_cholesky_and_cholesky_grad_shape(): if not imported_scipy: raise SkipTest("Scipy needed for the Cholesky op.") rng = numpy.random.RandomState(utt.fetch_seed()) x = tensor.matrix() for l in (cholesky(x), Cholesky(lower=True)(x), Cholesky(lower=False)(x)): f_chol = theano.function([x], l.shape) g = tensor.grad(l.sum(), x) f_cholgrad = theano.function([x], g.shape) topo_chol = f_chol.maker.fgraph.toposort() topo_cholgrad = f_cholgrad.maker.fgraph.toposort() if config.mode != 'FAST_COMPILE': assert sum([node.op.__class__ == Cholesky for node in topo_chol]) == 0 assert sum([node.op.__class__ == CholeskyGrad for node in topo_cholgrad]) == 0 for shp in [2, 3, 5]: m = numpy.cov(rng.randn(shp, shp + 10)).astype(config.floatX) yield numpy.testing.assert_equal, f_chol(m), (shp, shp) yield numpy.testing.assert_equal, f_cholgrad(m), (shp, shp)
Example 20
def test_forward_probability2(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() fp = 2**model._forward_probability(seq) # examples in wikipedia are normalized fp = (fp.T / fp.sum(axis=1)).T wikipedia_results = [ [0.8182, 0.1818], [0.8834, 0.1166], [0.1907, 0.8093], [0.7308, 0.2692], [0.8673, 0.1327], ] assert_array_almost_equal(wikipedia_results, fp, 4)
Example 21
def test_backward_probability(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() bp = 2**model._backward_probability(seq) # examples in wikipedia are normalized bp = (bp.T / bp.sum(axis=1)).T wikipedia_results = [ # Forward-backward algorithm doesn't need b0_5, # so .backward_probability doesn't compute it. # [0.6469, 0.3531], [0.5923, 0.4077], [0.3763, 0.6237], [0.6533, 0.3467], [0.6273, 0.3727], [0.5, 0.5], ] assert_array_almost_equal(wikipedia_results, bp, 4)
Example 22
def test_forward_probability2(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() fp = 2**model._forward_probability(seq) # examples in wikipedia are normalized fp = (fp.T / fp.sum(axis=1)).T wikipedia_results = [ [0.8182, 0.1818], [0.8834, 0.1166], [0.1907, 0.8093], [0.7308, 0.2692], [0.8673, 0.1327], ] assert_array_almost_equal(wikipedia_results, fp, 4)
Example 23
def test_backward_probability(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() bp = 2**model._backward_probability(seq) # examples in wikipedia are normalized bp = (bp.T / bp.sum(axis=1)).T wikipedia_results = [ # Forward-backward algorithm doesn't need b0_5, # so .backward_probability doesn't compute it. # [0.6469, 0.3531], [0.5923, 0.4077], [0.3763, 0.6237], [0.6533, 0.3467], [0.6273, 0.3727], [0.5, 0.5], ] assert_array_almost_equal(wikipedia_results, bp, 4)
Example 24
def test_forward_probability2(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() fp = 2**model._forward_probability(seq) # examples in wikipedia are normalized fp = (fp.T / fp.sum(axis=1)).T wikipedia_results = [ [0.8182, 0.1818], [0.8834, 0.1166], [0.1907, 0.8093], [0.7308, 0.2692], [0.8673, 0.1327], ] assert_array_almost_equal(wikipedia_results, fp, 4)
Example 25
def test_backward_probability(): from numpy.testing import assert_array_almost_equal model, states, symbols, seq = _wikipedia_example_hmm() bp = 2**model._backward_probability(seq) # examples in wikipedia are normalized bp = (bp.T / bp.sum(axis=1)).T wikipedia_results = [ # Forward-backward algorithm doesn't need b0_5, # so .backward_probability doesn't compute it. # [0.6469, 0.3531], [0.5923, 0.4077], [0.3763, 0.6237], [0.6533, 0.3467], [0.6273, 0.3727], [0.5, 0.5], ] assert_array_almost_equal(wikipedia_results, bp, 4)
Example 26
def test_anchor(): x = numpy.array( [[-84., -40., 99., 55.], [-176., -88., 191., 103.], [-360., -184., 375., 199.], [-56., -56., 71., 71.], [-120., -120., 135., 135.], [-248., -248., 263., 263.], [-36., -80., 51., 95.], [-80., -168., 95., 183.], [-168., -344., 183., 359.]] ) y = keras_rcnn.backend.anchor( scales=keras.backend.cast([8, 16, 32], keras.backend.floatx())) y = keras.backend.eval(y) numpy.testing.assert_array_almost_equal(x, y)
Example 27
def test_clip(): boxes = numpy.array( [[0, 0, 0, 0], [1, 2, 3, 4], [-4, 2, 1000, 6000], [3, -10, 223, 224]]) shape = [224, 224] boxes = keras.backend.variable(boxes) results = keras_rcnn.backend.clip(boxes, shape) results = keras.backend.eval(results) expected = numpy.array( [[0, 0, 0, 0], [1, 2, 3, 4], [0, 2, 223, 223], [3, 0, 223, 223]]) numpy.testing.assert_array_almost_equal(results, expected) boxes = numpy.reshape(numpy.arange(200, 200 + 12 * 5), (-1, 12)) shape = [224, 224] boxes = keras.backend.variable(boxes) results = keras_rcnn.backend.clip(boxes, shape) results = keras.backend.eval(results) expected = numpy.array( [[200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211], [212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223], [223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223], [223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223], [223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223]]) numpy.testing.assert_array_almost_equal(results, expected, 0)
Example 28
def test_bbox_transform(): gt_rois = numpy.array([[-84., -40., 99., 55.], [-176., -88., 191., 103.], [-360., -184., 375., 199.], [-56., -56., 71., 71.], [-120., -120., 135., 135.], [-248., -248., 263., 263.], [-36., -80., 51., 95.], [-80., -168., 95., 183.], [-168., -344., 183., 359.]]) ex_rois = 2 * gt_rois gt_rois = keras.backend.variable(gt_rois) ex_rois = keras.backend.variable(ex_rois) results = keras_rcnn.backend.bbox_transform(ex_rois, gt_rois) results = keras.backend.eval(results) expected = numpy.array( [[-0.02043597, -0.03926702, -0.69042609, -0.68792524], [-0.01020408, -0.01958225, -0.69178756, -0.69053962], [-0.00509857, -0.00977836, -0.6924676, -0.69184425], [-0.02941176, -0.02941176, -0.68923328, -0.68923328], [-0.0146771, -0.0146771, -0.69119215, -0.69119215], [-0.00733138, -0.00733138, -0.69217014, -0.69217014], [-0.04285714, -0.02136752, -0.68744916, -0.69030223], [-0.02136752, -0.01066856, -0.69030223, -0.69172572], [-0.01066856, -0.00533049, -0.69172572, -0.6924367]]) numpy.testing.assert_array_almost_equal(results, expected)
Example 29
def test_scale_enum(): anchor = numpy.expand_dims(numpy.array([0, 0, 0, 0]), 0) scales = numpy.array([1, 2, 3]) anchor = keras.backend.variable(anchor) scales = keras.backend.variable(scales) results = keras_rcnn.backend.common._scale_enum(anchor, scales) results = keras.backend.eval(results) expected = numpy.array( [[0, 0, 0, 0], [-0.5, -0.5, 0.5, 0.5], [-1., -1., 1., 1.]]) numpy.testing.assert_array_equal(results, expected) anchor = keras.backend.cast( numpy.expand_dims(numpy.array([2, 3, 100, 100]), 0), 'float32') anchor = keras.backend.variable(anchor) results = keras_rcnn.backend.common._scale_enum(anchor, scales) results = keras.backend.eval(results) expected = numpy.array([[2., 3., 100., 100.], [-47.5, -46., 149.5, 149.], [-97., -95., 199., 198.]]) numpy.testing.assert_array_equal(results, expected)
Example 30
def test_whctrs(): anchor = keras.backend.cast(keras.backend.expand_dims([0, 0, 0, 0], 0), 'float32') results0, results1, results2, results3 = keras_rcnn.backend.common._whctrs( anchor) results = numpy.array( [keras.backend.eval(results0), keras.backend.eval(results1), keras.backend.eval(results2), keras.backend.eval(results3)]) expected = numpy.expand_dims([1, 1, 0, 0], 1) numpy.testing.assert_array_equal(results, expected) anchor = keras.backend.cast(keras.backend.expand_dims([2, 3, 100, 100], 0), 'float32') results0, results1, results2, results3 = keras_rcnn.backend.common._whctrs( anchor) results = numpy.array( [keras.backend.eval(results0), keras.backend.eval(results1), keras.backend.eval(results2), keras.backend.eval(results3)]) expected = numpy.expand_dims([99, 98, 51, 51.5], 1) numpy.testing.assert_array_equal(results, expected)
Example 31
def test_smooth_l1(): output = keras.backend.variable( [[[2.5, 0.0, 0.4, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 2.5, 0.0, 0.4]], [[3.5, 0.0, 0.0, 0.0], [0.0, 0.4, 0.0, 0.9], [0.0, 0.0, 1.5, 0.0]]] ) target = keras.backend.zeros_like(output) x = keras_rcnn.backend.smooth_l1(output, target) numpy.testing.assert_approx_equal(keras.backend.eval(x), 8.645) weights = keras.backend.variable( [[2, 1, 1], [0, 3, 0]] ) x = keras_rcnn.backend.smooth_l1(output, target, weights=weights) numpy.testing.assert_approx_equal(keras.backend.eval(x), 7.695)
Example 32
def assert_gwas_1(unit_test, gwas): expected_snp = pandas.Series(["rs1666", "rs1", "rs2", "rs3", "rs4", "rs6", "rs7", "rs7666", "rs8", "rs9"], dtype=numpy.str) numpy.testing.assert_array_equal(gwas[SNP], expected_snp) expected_effect = pandas.Series(["A", "C", "C", "G", "A", "G", "T", "A", "A", "A"], dtype=numpy.str) numpy.testing.assert_array_equal(gwas[EFFECT_ALLELE], expected_effect) expected_non_effect = pandas.Series(["G", "T", "T", "A", "G", "A", "C", "G", "G", "G"], dtype=numpy.str) numpy.testing.assert_array_equal(gwas[NON_EFFECT_ALLELE], expected_non_effect) expected_zscore = pandas.Series([0.3, -0.2, 0.5, 1.3, -0.3, 2.9, 4.35, 1.3, 0.09, 0.09], dtype=numpy.float32) numpy.testing.assert_allclose(gwas[ZSCORE], expected_zscore, rtol=0.001) expected_chromosome = pandas.Series(["chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1"], dtype=numpy.str) numpy.testing.assert_array_equal(gwas[CHROMOSOME], expected_chromosome) expected_position = pandas.Series([0, 1, 5, 20, 30, 42, 43, 45, 50, 70]) numpy.testing.assert_array_equal(gwas[POSITION], expected_position)
Example 33
def assert_gwas_2(unit_test, gwas): expected_snp = pandas.Series(["rsC", "rs1666", "rs1", "rs2", "rs4", "rsB", "rsA", "rs7666", "rs8", "rs9"], dtype=numpy.str) numpy.testing.assert_array_equal(gwas[SNP], expected_snp) expected_effect = pandas.Series(["T", "A", "C", "C", "A", "G", "G", "A", "A", "A"], dtype=numpy.str) numpy.testing.assert_array_equal(gwas[EFFECT_ALLELE], expected_effect) expected_non_effect = pandas.Series(["C", "G", "T", "T", "G", "A", "A", "G", "G", "G"], dtype=numpy.str) numpy.testing.assert_array_equal(gwas[NON_EFFECT_ALLELE], expected_non_effect) expected_zscore = pandas.Series([4.35, 0.3, -0.2, 1.3, -0.3, 2.9, 1.3, 1.3, 0.09, 0.09], dtype=numpy.float32) numpy.testing.assert_allclose(gwas[ZSCORE], expected_zscore, rtol=0.001) expected_chromosome = pandas.Series(["chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1", "chr1"], dtype=numpy.str) numpy.testing.assert_array_equal(gwas[CHROMOSOME], expected_chromosome) expected_position = pandas.Series([None, None, None, None, None, None, None, None, None, None]) numpy.testing.assert_array_equal(gwas[POSITION], expected_position)
Example 34
def test_load_model(self): snp_model = PredictionModel.load_model("tests/_td/dbs/test_1.db") e_e = SampleData.dataframe_from_extra(SampleData.sample_extra_2()) numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_GENE], e_e[PredictionModel.WDBEQF.K_GENE]) numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_GENE_NAME], e_e[PredictionModel.WDBEQF.K_GENE_NAME]) numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_N_SNP_IN_MODEL], e_e[PredictionModel.WDBEQF.K_N_SNP_IN_MODEL]) numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_PRED_PERF_R2], e_e[PredictionModel.WDBEQF.K_PRED_PERF_R2]) numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_PRED_PERF_PVAL], e_e[PredictionModel.WDBEQF.K_PRED_PERF_PVAL]) numpy.testing.assert_array_equal(snp_model.extra[PredictionModel.WDBEQF.K_PRED_PERF_QVAL], e_e[PredictionModel.WDBEQF.K_PRED_PERF_QVAL]) e_w = SampleData.dataframe_from_weights(SampleData.sample_weights_2()) numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_RSID], e_w[PredictionModel.WDBQF.K_RSID]) numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_GENE], e_w[PredictionModel.WDBQF.K_GENE]) numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_WEIGHT], e_w[PredictionModel.WDBQF.K_WEIGHT]) numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_NON_EFFECT_ALLELE], e_w[PredictionModel.WDBQF.K_NON_EFFECT_ALLELE]) numpy.testing.assert_array_equal(snp_model.weights[PredictionModel.WDBQF.K_EFFECT_ALLELE], e_w[PredictionModel.WDBQF.K_EFFECT_ALLELE])
Example 35
def test_from_load(self): m = MatrixManager.load_matrix_manager("tests/_td/cov/cov.txt.gz") snps, cov = m.get("ENSG00000239789.1") self.assertEqual(snps, cov_data.SNPS_ENSG00000239789_1) numpy.testing.assert_array_almost_equal(cov, cov_data.COV_ENSG00000239789_1) n = m.n_snps("ENSG00000239789.1") self.assertEqual(n, len(cov_data.SNPS_ENSG00000239789_1)) with self.assertRaises(Exceptions.InvalidArguments) as ctx: snps, cov = m.get("ENSG00000183742.8", ["rs7806506", "rs12718973"]) self.assertTrue("whitelist" in ctx.exception.message) #? whitelist = ["rs3094989", "rs7806506", "rs12536095", "rs10226814"] snps, cov = m.get("ENSG00000183742.8", whitelist) self.assertEqual(snps, cov_data.SNPS_ENSG00000183742_8_w) numpy.testing.assert_array_almost_equal(cov, cov_data.COV_ENSG00000183742_8_w) snps, cov = m.get("ENSG00000004766.11") self.assertEqual(snps, cov_data.SNPS_ENSG00000004766_11) numpy.testing.assert_array_almost_equal(cov, cov_data.COV_ENSG00000004766_11) n = m.n_snps("ENSG00000004766.11") self.assertEqual(n, len(cov_data.COV_ENSG00000004766_11))
Example 36
def test_get_sequence_lengths_from_binary_mask(self): binary_mask = torch.ByteTensor([[1, 1, 1, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0]]) lengths = util.get_lengths_from_binary_sequence_mask(binary_mask) numpy.testing.assert_array_equal(lengths.numpy(), numpy.array([3, 2, 6, 1]))
Example 37
def test_get_sequence_lengths_converts_to_long_tensor_and_avoids_variable_overflow(self): # Tests the following weird behaviour in Pytorch 0.1.12 # doesn't happen for our sequence masks: # # mask = torch.ones([260]).byte() # mask.sum() # equals 260. # var_mask = torch.autograd.Variable(mask) # var_mask.sum() # equals 4, due to 8 bit precision - the sum overflows. binary_mask = Variable(torch.ones(2, 260).byte()) lengths = util.get_lengths_from_binary_sequence_mask(binary_mask) numpy.testing.assert_array_equal(lengths.data.numpy(), numpy.array([260, 260]))
Example 38
def test_weighted_sum_works_on_simple_input(self): batch_size = 1 sentence_length = 5 embedding_dim = 4 sentence_array = numpy.random.rand(batch_size, sentence_length, embedding_dim) sentence_tensor = Variable(torch.from_numpy(sentence_array).float()) attention_tensor = Variable(torch.FloatTensor([[.3, .4, .1, 0, 1.2]])) aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy() assert aggregated_array.shape == (batch_size, embedding_dim) expected_array = (0.3 * sentence_array[0, 0] + 0.4 * sentence_array[0, 1] + 0.1 * sentence_array[0, 2] + 0.0 * sentence_array[0, 3] + 1.2 * sentence_array[0, 4]) numpy.testing.assert_almost_equal(aggregated_array, [expected_array], decimal=5)
Example 39
def test_weighted_sum_handles_higher_order_input(self): batch_size = 1 length_1 = 5 length_2 = 6 length_3 = 2 embedding_dim = 4 sentence_array = numpy.random.rand(batch_size, length_1, length_2, length_3, embedding_dim) attention_array = numpy.random.rand(batch_size, length_1, length_2, length_3) sentence_tensor = Variable(torch.from_numpy(sentence_array).float()) attention_tensor = Variable(torch.from_numpy(attention_array).float()) aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy() assert aggregated_array.shape == (batch_size, length_1, length_2, embedding_dim) expected_array = (attention_array[0, 3, 2, 0] * sentence_array[0, 3, 2, 0] + attention_array[0, 3, 2, 1] * sentence_array[0, 3, 2, 1]) numpy.testing.assert_almost_equal(aggregated_array[0, 3, 2], expected_array, decimal=5)
Example 40
def test_flatten_and_batch_shift_indices(self): indices = numpy.array([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 9, 9, 9]], [[2, 1, 0, 7], [7, 7, 2, 3], [0, 0, 4, 2]]]) indices = Variable(torch.LongTensor(indices)) shifted_indices = util.flatten_and_batch_shift_indices(indices, 10) numpy.testing.assert_array_equal(shifted_indices.data.numpy(), numpy.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 12, 11, 10, 17, 17, 17, 12, 13, 10, 10, 14, 12]))
Example 41
def test_flattened_index_select(self): indices = numpy.array([[1, 2], [3, 4]]) targets = torch.ones([2, 6, 3]).cumsum(1) - 1 # Make the second batch double it's index so they're different. targets[1, :, :] *= 2 indices = Variable(torch.LongTensor(indices)) targets = Variable(targets) selected = util.flattened_index_select(targets, indices) assert list(selected.size()) == [2, 2, 2, 3] ones = numpy.ones([3]) numpy.testing.assert_array_equal(selected[0, 0, 0, :].data.numpy(), ones) numpy.testing.assert_array_equal(selected[0, 0, 1, :].data.numpy(), ones * 2) numpy.testing.assert_array_equal(selected[0, 1, 0, :].data.numpy(), ones * 3) numpy.testing.assert_array_equal(selected[0, 1, 1, :].data.numpy(), ones * 4) numpy.testing.assert_array_equal(selected[1, 0, 0, :].data.numpy(), ones * 2) numpy.testing.assert_array_equal(selected[1, 0, 1, :].data.numpy(), ones * 4) numpy.testing.assert_array_equal(selected[1, 1, 0, :].data.numpy(), ones * 6) numpy.testing.assert_array_equal(selected[1, 1, 1, :].data.numpy(), ones * 8) # Check we only accept 2D indices. with pytest.raises(ConfigurationError): util.flattened_index_select(targets, torch.ones([3, 4, 5]))
Example 42
def test_bucket_values(self): indices = torch.LongTensor([1, 2, 7, 1, 56, 900]) bucketed_distances = util.bucket_values(indices) numpy.testing.assert_array_equal(bucketed_distances.numpy(), numpy.array([1, 2, 5, 1, 8, 9]))
Example 43
def get_package_name(filepath): """ Given a path where a package is installed, determine its name. Parameters ---------- filepath : str Path to a file. If the determination fails, "numpy" is returned. Examples -------- >>> np.testing.nosetester.get_package_name('nonsense') 'numpy' """ fullpath = filepath[:] pkg_name = [] while 'site-packages' in filepath or 'dist-packages' in filepath: filepath, p2 = os.path.split(filepath) if p2 in ('site-packages', 'dist-packages'): break pkg_name.append(p2) # if package name determination failed, just default to numpy/scipy if not pkg_name: if 'scipy' in fullpath: return 'scipy' else: return 'numpy' # otherwise, reverse to get correct order and return pkg_name.reverse() # don't include the outer egg directory if pkg_name[0].endswith('.egg'): pkg_name.pop(0) return '.'.join(pkg_name)
Example 44
def __init__(self, package=None, raise_warnings="release", depth=0): # Back-compat: 'None' used to mean either "release" or "develop" # depending on whether this was a release or develop version of # numpy. Those semantics were fine for testing numpy, but not so # helpful for downstream projects like scipy that use # numpy.testing. (They want to set this based on whether *they* are a # release or develop version, not whether numpy is.) So we continue to # accept 'None' for back-compat, but it's now just an alias for the # default "release". if raise_warnings is None: raise_warnings = "release" package_name = None if package is None: f = sys._getframe(1 + depth) package_path = f.f_locals.get('__file__', None) if package_path is None: raise AssertionError package_path = os.path.dirname(package_path) package_name = f.f_locals.get('__name__', None) elif isinstance(package, type(os)): package_path = os.path.dirname(package.__file__) package_name = getattr(package, '__name__', None) else: package_path = str(package) self.package_path = package_path # Find the package name under test; this name is used to limit coverage # reporting (if enabled). if package_name is None: package_name = get_package_name(package_path) self.package_name = package_name # Set to "release" in constructor in maintenance branches. self.raise_warnings = raise_warnings
Example 45
def test_init(illumination_stats): histogram = numpy.zeros((3, 2**16), dtype=numpy.float64) assert illumination_stats.depth == 2 ** 16 assert illumination_stats.channels == ["DNA", "ER", "Mito"] assert illumination_stats.name == "" assert illumination_stats.down_scale_factor == 2 assert illumination_stats.median_filter_size == 3 numpy.testing.assert_array_equal(illumination_stats.hist, histogram) assert illumination_stats.count == 0 assert illumination_stats.expected == 1 assert illumination_stats.mean_image is None assert illumination_stats.original_image_size is None
Example 46
def test_add_to_mean_no_scaling(illumination_stats): numpy.random.seed(8) image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16) illumination_stats.down_scale_factor = 1 illumination_stats.addToMean(image) assert illumination_stats.mean_image.shape == (16, 16, 3) # This method rescales the input image and normalizes pixels according to # the data type. We restore the values in this test to match the input for comparison. result_mean = illumination_stats.mean_image #* (2 ** 16) numpy.testing.assert_array_equal(numpy.round(result_mean).astype(numpy.uint16), image)
Example 47
def test_add_to_mean_with_scaling(illumination_stats): numpy.random.seed(8) image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16) illumination_stats.addToMean(image) assert illumination_stats.mean_image.shape == (8, 8, 3) result_mean = illumination_stats.mean_image assert result_mean.sum() > 0 #numpy.testing.assert_array_equal(result_mean.astype(numpy.uint16), image)
Example 48
def test_process_image(illumination_stats): numpy.random.seed(8) image = numpy.random.randint(256, size=(16, 16, 3), dtype=numpy.uint16) illumination_stats.processImage(0, image, None) histogram1 = numpy.histogram(image[:, :, 0], bins=2 ** 16, range=(0, 2 ** 16))[0] histogram2 = numpy.histogram(image[:, :, 1], bins=2 ** 16, range=(0, 2 ** 16))[0] histogram3 = numpy.histogram(image[:, :, 2], bins=2 ** 16, range=(0, 2 ** 16))[0] assert illumination_stats.count == 1 numpy.testing.assert_array_equal(illumination_stats.hist[0], histogram1) numpy.testing.assert_array_equal(illumination_stats.hist[1], histogram2) numpy.testing.assert_array_equal(illumination_stats.hist[2], histogram3)
Example 49
def test_init(compress, out_dir): stats = {"original_size": [16, 16]} channels = ["DNA", "ER", "Mito"] control_distribution = numpy.zeros((3, 2 ** 8), dtype=numpy.float64) assert compress.stats == stats assert compress.channels == channels assert compress.out_dir == out_dir assert compress.count == 0 assert compress.expected == 1 assert not compress.metadata_control_filter("x") numpy.testing.assert_array_equal(compress.controls_distribution, control_distribution) assert compress.source_format == "tiff" assert compress.target_format == "png" assert compress.output_shape == [16, 16]
Example 50
def test_set_control_samples_filter(compress): test_filter = lambda x: True control_distribution = numpy.zeros((3, 2 ** 8), dtype=numpy.float64) compress.set_control_samples_filter(test_filter) assert compress.metadata_control_filter(1) numpy.testing.assert_array_equal(compress.controls_distribution, control_distribution)