Python numpy.zeros_like() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def roi(img,vertices):
    # blank mask:
    mask = np.zeros_like(img)

    # filling pixels inside the polygon defined by "vertices" with the fill color
    cv2.fillPoly(mask, vertices, 255)

    # returning the image only where mask pixels are nonzero
    masked = cv2.bitwise_and(img, mask)
    return masked 

Example 2

def roll_zeropad(a, shift, axis=None):
    a = np.asanyarray(a)
    if shift == 0: return a
    if axis is None:
        n = a.size
        reshape = True
    else:
        n = a.shape[axis]
        reshape = False
    if np.abs(shift) > n:
        res = np.zeros_like(a)
    elif shift < 0:
        shift += n
        zeros = np.zeros_like(a.take(np.arange(n-shift), axis))
        res = np.concatenate((a.take(np.arange(n-shift,n), axis), zeros), axis)
    else:
        zeros = np.zeros_like(a.take(np.arange(n-shift,n), axis))
        res = np.concatenate((zeros, a.take(np.arange(n-shift), axis)), axis)
    if reshape:
        return res.reshape(a.shape)
    else:
        return res 

Example 3

def dbFun(_x,_original_vals, f):
    db = DBSCAN(eps=0.3, min_samples=20).fit(_x)
    core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
    core_samples_mask[db.core_sample_indices_] = True

    labels = db.labels_
    #print(labels)
    n_clusters_ = len(set(labels)) - (1 if -1 else 0)
    #gettingCharacteristics(_x, core_samples_mask, labels, n_clusters_,
    #_original_vals)
    print("Wait plotting clusters.....")
    plotCluster(_x, labels, core_samples_mask, n_clusters_, f)
    return

##############################################################################################
# Plotting the cluster after the result of DBSCAN 

Example 4

def test_op(self):
    logits = np.random.randn(self.sequence_length, self.batch_size,
                             self.vocab_size)
    logits = logits.astype(np.float32)
    sequence_length = np.array([1, 2, 3, 4])
    targets = np.random.randint(0, self.vocab_size,
                                [self.sequence_length, self.batch_size])
    losses = seq2seq_losses.cross_entropy_sequence_loss(logits, targets,
                                                        sequence_length)

    with self.test_session() as sess:
      losses_ = sess.run(losses)

    # Make sure all losses not past the sequence length are > 0
    np.testing.assert_array_less(np.zeros_like(losses_[:1, 0]), losses_[:1, 0])
    np.testing.assert_array_less(np.zeros_like(losses_[:2, 1]), losses_[:2, 1])
    np.testing.assert_array_less(np.zeros_like(losses_[:3, 2]), losses_[:3, 2])

    # Make sure all losses past the sequence length are 0
    np.testing.assert_array_equal(losses_[1:, 0], np.zeros_like(losses_[1:, 0]))
    np.testing.assert_array_equal(losses_[2:, 1], np.zeros_like(losses_[2:, 1]))
    np.testing.assert_array_equal(losses_[3:, 2], np.zeros_like(losses_[3:, 2])) 

Example 5

def __init__(self, input_shape, output_shape):
        self.input_shape = input_shape
        self.input = np.zeros((output_shape[0], self.input_shape[0] * self.input_shape[1] *
                               self.input_shape[2]),dtype=np.float32)
        self.output = np.zeros(output_shape, dtype=np.float32)
        self.output_raw = np.zeros_like(self.output)
        self.output_error = np.zeros_like(self.output)
        self.output_average = np.zeros(self.output.shape[1], dtype=np.float32)
        self.weights = np.random.normal(0, np.sqrt(2.0 / (self.output.shape[1] + self.input.shape[1])),
                                        size=(self.input.shape[1], self.output.shape[1])).astype(np.float32)
        self.gradient = np.zeros_like(self.weights)
        self.reconstruction = np.zeros_like(self.weights)
        self.errors = np.zeros_like(self.weights)
        self.output_ranks = np.zeros(self.output.shape[1], dtype=np.int32)
        self.learning_rate = 1
        self.norm_limit = 0.1 

Example 6

def gen_batches(data, n_seqs, n_steps):
    """Create a generator that returns batches of size n_seqs x n_steps."""

    characters_per_batch = n_seqs * n_steps
    n_batches = len(data) // characters_per_batch

    # Keep only enough characters to make full batches
    data = data[:n_batches*characters_per_batch]
    data = data.reshape([n_seqs, -1])

    for n in range(0, data.shape[1], n_steps):
        x = data[:, n:n+n_steps]
        y = np.zeros_like(x)
        y[:, :-1], y[:, -1] = x[:, 1:], x[:, 0]
        yield x, y

#-------------------------------------------------------------------------------
# Parse commandline
#------------------------------------------------------------------------------- 

Example 7

def filter(self, p):
        """

        Parameters
        ----------
        p: NDArray
            Filtering input which is 2D or 3D with format
            HW or HWC

        Returns
        -------
        ret: NDArray
            Filtering output whose shape is same with input
        """
        p = to_32F(p)
        if len(p.shape) == 2:
            return self._Filter.filter(p)
        elif len(p.shape) == 3:
            channels = p.shape[2]
            ret = np.zeros_like(p, dtype=np.float32)
            for c in range(channels):
                ret[:, :, c] = self._Filter.filter(p[:, :, c])
            return ret 

Example 8

def _process_label(self, fn): 
        """
        TODO: Fix one-indexing to zero-index; 
        retained one-index due to uint8 constraint
        """
        mat = loadmat(fn, squeeze_me=True)
        _labels = mat['seglabel'].astype(np.uint8)
        # _labels -= 1 # (move to zero-index)

        labels = np.zeros_like(_labels)
        for (idx, name) in enumerate(mat['names']): 
            try: 
                value = SUNRGBDDataset.target_hash[name]
            except: 
                value = 0
            mask = _labels == idx+1
            labels[mask] = value
        return self._pad_image(labels) 

Example 9

def recall_from_IoU(IoU, samples=500): 
    """
    plot recall_vs_IoU_threshold
    """

    if not (isinstance(IoU, list) or IoU.ndim == 1):
        raise ValueError('IoU needs to be a list or 1-D')
    iou = np.float32(IoU)

    # Plot intersection over union
    IoU_thresholds = np.linspace(0.0, 1.0, samples)
    recall = np.zeros_like(IoU_thresholds)
    for idx, IoU_th in enumerate(IoU_thresholds):
        tp, relevant = 0, 0
        inds, = np.where(iou >= IoU_th)
        recall[idx] = len(inds) * 1.0 / len(IoU)

    return recall, IoU_thresholds 

# =====================================================================
# Generic utility functions for object recognition
# --------------------------------------------------------------------- 

Example 10

def reset_index(self):
        """Reset index to range based
        """
        dfs = self.to_delayed()
        sizes = np.asarray(compute(*map(delayed(len), dfs)))
        prefixes = np.zeros_like(sizes)
        prefixes[1:] = np.cumsum(sizes[:-1])

        @delayed
        def fix_index(df, startpos):
            return df.set_index(np.arange(start=startpos,
                                          stop=startpos + len(df),
                                          dtype=np.intp))

        outdfs = [fix_index(df, startpos)
                  for df, startpos in zip(dfs, prefixes)]
        return from_delayed(outdfs) 

Example 11

def recoded_features(self, inputs, layer=-1, inverse_fn=ielu):

        hidden = self.get_hidden_values(inputs, store=True, layer=layer).eval()

        bench = self.get_reconstructed_input(np.zeros_like(hidden),
                                             layer=layer).eval().squeeze()
        if inverse_fn: ibench = inverse_fn(bench)
        
        results = []
        for h in range(hidden.shape[-1]):
            hidden_h = np.zeros_like(hidden)
            hidden_h[..., h] = hidden[..., h]
            feature = self.get_reconstructed_input(hidden_h, layer=layer).eval().squeeze()
            if inverse_fn:
                iresult = inverse_fn(feature) - ibench
                results.append(self.coders[0].coding(iresult).eval())
            else:
                results.append(feature - bench)

        return np.array(results), bench 

Example 12

def zscore(x):
    """Computes the Z-score of a vector x. Removes the mean and divides by the
    standard deviation. Has a failback if std is 0 to return all zeroes.

    Parameters
    ----------
    x: list of int
        Input time-series

    Returns
    -------
    z: list of float
        Z-score normalized time-series
    """
    mean = np.mean(x)
    sd = np.std(x)
    if sd == 0:
        z = np.zeros_like(x)
    else:
        z = (x - mean)/sd
    return z 

Example 13

def _encode_observation(self, idx):
        end_idx   = idx + 1 # make noninclusive
        start_idx = end_idx - self.frame_history_len
        # this checks if we are using low-dimensional observations, such as RAM
        # state, in which case we just directly return the latest RAM.
        if len(self.obs.shape) == 2:
            return self.obs[end_idx-1]
        # if there weren't enough frames ever in the buffer for context
        if start_idx < 0 and self.num_in_buffer != self.size:
            start_idx = 0
        for idx in range(start_idx, end_idx - 1):
            if self.done[idx % self.size]:
                start_idx = idx + 1
        missing_context = self.frame_history_len - (end_idx - start_idx)
        # if zero padding is needed for missing context
        # or we are on the boundry of the buffer
        if start_idx < 0 or missing_context > 0:
            frames = [np.zeros_like(self.obs[0]) for _ in range(missing_context)]
            for idx in range(start_idx, end_idx):
                frames.append(self.obs[idx % self.size])
            return np.concatenate(frames, 2)
        else:
            # this optimization has potential to saves about 30% compute time \o/
            img_h, img_w = self.obs.shape[1], self.obs.shape[2]
            return self.obs[start_idx:end_idx].transpose(1, 2, 0, 3).reshape(img_h, img_w, -1) 

Example 14

def do_batch_sampling(pp_unl, batch_size):
    """
    return batch_size number of of item, sampled by uncertainty
    each with a label sampled from prob
    """
    n = pp_unl.shape[0]
    uncertain = np.abs(pp_unl[:,0] - 0.5)
    if n < batch_size:
        batch_size = n
    sam_weight = np.exp(20 * (1-uncertain))
    items = np.random.choice(n, batch_size, replace = False, p = sam_weight*1.0 / np.sum(sam_weight) )
    labels = np.zeros_like(items)
    
    for (i,item) in enumerate(items):
        if np.random.random() < pp_unl[item, 1]: 
            l = 1 
        else:
            l = 0
        labels[i] = l
    
    return (items, labels) 

Example 15

def viterbi_decode(score, transition_params):
  """ Adapted from Tensorflow implementation.
  Decode the highest scoring sequence of tags outside of TensorFlow.
  This should only be used at test time.
  Args:
    score: A [seq_len, num_tags] matrix of unary potentials.
    transition_params: A [num_tags, num_tags] matrix of binary potentials.
  Returns:
    viterbi: A [seq_len] list of integers containing the highest scoring tag
        indicies.
    viterbi_score: A float containing the score for the Viterbi sequence.
  """
  trellis = numpy.zeros_like(score)
  backpointers = numpy.zeros_like(score, dtype=numpy.int32)
  trellis[0] = score[0]
  for t in range(1, score.shape[0]):
    v = numpy.expand_dims(trellis[t - 1], 1) + transition_params
    trellis[t] = score[t] + numpy.max(v, 0)
    backpointers[t] = numpy.argmax(v, 0)
  viterbi = [numpy.argmax(trellis[-1])]
  for bp in reversed(backpointers[1:]):
    viterbi.append(bp[viterbi[-1]])
  viterbi.reverse()
  viterbi_score = numpy.max(trellis[-1])
  return viterbi, viterbi_score 

Example 16

def __init__(self, syn0, syn1):
        # Hyperparameters
        self.__b1 = 0.9
        self.__b2 = 0.999
        self.__learing_rate = 0.001
        self.__epsilon = 1e-8

        # initialize momentum
        self.__m_syn0 = np.zeros_like(syn0)
        self.__m_syn1 = np.zeros_like(syn1)
        self.__v_syn0 = np.zeros_like(syn0)
        self.__v_syn1 = np.zeros_like(syn1)

        # get a copy of weight
        self.__syn0 = copy.deepcopy(syn0)
        self.__syn1 = copy.deepcopy(syn1) 

Example 17

def __init__(self, image_a, image_b, window_size=32, search_size=32, distance=16):
        """
        Initialization of the class.

        :param image_a: first image to be evaluated
        :param image_b: second image to be evaluated
        :param int window_size: size of the interrogation window on first image
        :param int search_size: size of the search window on second image
        :param int distance: distance between beginning if first interrogation window and second
        """
        image_a, image_b = self._check_images(image_a, image_b)
        self.grid_spec = GridSpec(image_a.shape, image_a.strides,
                                   window_size, search_size, distance)

        self._correlator = FFTCorrelator(window_size, search_size)
        self._set_images(image_a, image_b)

        self.u = np.zeros(self.grid_spec.get_grid_shape())
        self.v = np.zeros_like(self.u)
        self._grid_creator() 

Example 18

def segmentation(_image, typeOfFruit):
    #_denoisedImage = rank.median(_image, disk(2));
    #_elevationMap = sobel(_denoisedImage);
    #print(_image);
    _elevationMap = sobel(_image);
    #print(_image);
    _marker = np.zeros_like(_image);
    if (typeOfFruit == 'Counting'):
        _marker[_image < 1998] = 1;
        _marker[_image > 61541] = 2;
    elif (typeOfFruit == 'Temperature'):
        #print("Printing Image");
        #print(_image < 10);
        _marker[_image < 30] = 1;
        #print(_marker);
        _marker[_image > 150] = 2;
    #_marker = rank.gradient(_denoisedImage, disk(5)) < 10;
    #_marker = ndi.label(_marker)[0];
    #_elevationMap = rank.gradient(_denoisedImage, disk(2));
    _segmentation = watershed(_elevationMap, _marker);
    #print(_segmentation);
    return _segmentation; 

Example 19

def segmentation(_image, typeOfFruit):
    #_denoisedImage = rank.median(_image, disk(2));
    #_elevationMap = sobel(_denoisedImage);
    #print(_image);
    _elevationMap = sobel(_image);
    #print(_image);
    _marker = np.zeros_like(_image);
    if (typeOfFruit == 'Counting'):
        _marker[_image < 1998] = 1;
        _marker[_image > 61541] = 2;
    elif (typeOfFruit == 'Temperature'):
        #print("Printing Image");        
        #print(_image < 10);
        _marker[_image < 30] = 1;
        #print(_marker);
        _marker[_image > 150] = 2;
    #_marker = rank.gradient(_denoisedImage, disk(5)) < 10;
    #_marker = ndi.label(_marker)[0];
    #_elevationMap = rank.gradient(_denoisedImage, disk(2));
    _segmentation = watershed(_elevationMap, _marker);
    #print(_segmentation);
    return _segmentation; 

Example 20

def overlap_ratio(boxes1, boxes2):
  # find intersection bbox
  x_int_bot = np.maximum(boxes1[:, 0], boxes2[0])
  x_int_top = np.minimum(boxes1[:, 0] + boxes1[:, 2], boxes2[0] + boxes2[2])
  y_int_bot = np.maximum(boxes1[:, 1], boxes2[1])
  y_int_top = np.minimum(boxes1[:, 1] + boxes1[:, 3], boxes2[1] + boxes2[3])

  # find intersection area
  dx = x_int_top - x_int_bot
  dy = y_int_top - y_int_bot
  area_int = np.where(np.logical_and(dx>0, dy>0), dx * dy, np.zeros_like(dx))

  # find union
  area_union = boxes1[:,2] * boxes1[:,3] + boxes2[2] * boxes2[3] - area_int

  # find overlap ratio
  ratio = np.where(area_union > 0, area_int/area_union, np.zeros_like(area_int))
  return ratio


###########################################################################
#                          overlap_ratio of two bboxes                    #
########################################################################### 

Example 21

def overlap_ratio_pair(boxes1, boxes2):
  # find intersection bbox
  x_int_bot = np.maximum(boxes1[:, 0], boxes2[:, 0])
  x_int_top = np.minimum(boxes1[:, 0] + boxes1[:, 2], boxes2[:, 0] + boxes2[:, 2])
  y_int_bot = np.maximum(boxes1[:, 1], boxes2[:, 1])
  y_int_top = np.minimum(boxes1[:, 1] + boxes1[:, 3], boxes2[:, 1] + boxes2[:, 3])

  # find intersection area
  dx = x_int_top - x_int_bot
  dy = y_int_top - y_int_bot
  area_int = np.where(np.logical_and(dx>0, dy>0), dx * dy, np.zeros_like(dx))

  # find union
  area_union = boxes1[:,2] * boxes1[:,3] + boxes2[:, 2] * boxes2[:, 3] - area_int

  # find overlap ratio
  ratio = np.where(area_union > 0, area_int/area_union, np.zeros_like(area_int))
  return ratio 

Example 22

def get_Conductivity(XYZ, sig0, sig1, R):
    """
    Define the conductivity for each point of the space
    """
    x, y, z = XYZ[:, 0], XYZ[:, 1], XYZ[:, 2]
    r_view = r(x, y, z)

    ind0 = (r_view > R)
    ind1 = (r_view <= R)

    assert (ind0 + ind1).all(), 'Some indicies not included'

    Sigma = np.zeros_like(x)

    Sigma[ind0] = sig0
    Sigma[ind1] = sig1

    return Sigma 

Example 23

def E_field_from_SheetCurruent(XYZ, srcLoc, sig, t, E0=1., orientation='X', kappa=0., epsr=1.):
    """
        Computing Analytic Electric fields from Plane wave in a Wholespace
        TODO:
            Add description of parameters
    """

    XYZ = Utils.asArray_N_x_Dim(XYZ, 3)
    # Check
    if XYZ.shape[0] > 1 & t.shape[0] > 1:
        raise Exception("I/O type error: For multiple field locations only a single frequency can be specified.")

    mu = mu_0*(1+kappa)

    if orientation == "X":
        z = XYZ[:, 2]
        bunja = -E0*(mu*sig)**0.5 * z * np.exp(-(mu*sig*z**2) / (4*t))
        bunmo = 2 * np.pi**0.5 * t**1.5
        Ex = bunja / bunmo
        Ey = np.zeros_like(z)
        Ez = np.zeros_like(z)
        return Ex, Ey, Ez
    else:
        raise NotImplementedError() 

Example 24

def H_field_from_SheetCurruent(XYZ, srcLoc, sig, t, E0=1., orientation='X', kappa=0., epsr=1.):
    """
        Plane wave propagating downward (negative z (depth))
    """

    XYZ = Utils.asArray_N_x_Dim(XYZ, 3)
    # Check
    if XYZ.shape[0] > 1 & t.shape[0] > 1:
        raise Exception("I/O type error: For multiple field locations only a single frequency can be specified.")

    mu = mu_0*(1+kappa)
    if orientation == "X":
        z = XYZ[:, 2]
        Hx = np.zeros_like(z)
        Hy = E0 * np.sqrt(sig / (np.pi*mu*t))*np.exp(-(mu*sig*z**2) / (4*t))
        Hz = np.zeros_like(z)
        return Hx, Hy, Hz
    else:
        raise NotImplementedError() 

Example 25

def appres(F, H, sig, chg, taux, c, mu, eps, n):

    Res = np.zeros_like(F)
    Phase = np.zeros_like(F)
    App_ImpZ= np.zeros_like(F, dtype='complex_')

    for i in range(0, len(F)):

        UD, EH, Z , K = Propagate(F[i], H, sig, chg, taux, c, mu, eps, n)

        App_ImpZ[i] = EH[0, 1]/EH[1, 1]

        Res[i] = np.abs(App_ImpZ[i])**2./(mu_0*omega(F[i]))
        Phase[i] = np.angle(App_ImpZ[i], deg = True)

    return Res, Phase

# Evaluate Up, Down components, E and H field, for a frequency range,
# a discretized depth range and a time range (use to calculate envelope) 

Example 26

def run(n, plotIt=True):
    # something to make a plot

    F = frange(-5., 5., 20)
    H = thick(50., 100., n)
    sign = sig(-5., 0., n)
    mun = mu(1., 2., n)
    epsn = eps(1., 9., n)
    chg = np.zeros_like(sign)
    taux = np.zeros_like(sign)
    c = np.zeros_like(sign)

    Res, Phase = appres(F, H, sign, chg, taux, c, mun, epsn, n)

    if plotIt:

        PlotAppRes(F, H, sign, chg, taux, c, mun, epsn, n, fenvelope=1000., PlotEnvelope=True)

    return Res, Phase 

Example 27

def J_field_from_SheetCurruent(XYZ, srcLoc, sig, f, E0=1., orientation='X', kappa=0., epsr=1., t=0.):
    """
        Plane wave propagating downward (negative z (depth))
    """

    XYZ = Utils.asArray_N_x_Dim(XYZ, 3)
    # Check
    if XYZ.shape[0] > 1 & f.shape[0] > 1:
        raise Exception("I/O type error: For multiple field locations only a single frequency can be specified.")

    mu = mu_0*(1+kappa)
    epsilon = epsilon_0*epsr
    sig_hat = sig + 1j*omega(f)*epsilon
    k  = np.sqrt( omega(f)**2. *mu*epsilon -1j*omega(f)*mu*sig )

    if orientation == "X":
        z = XYZ[:,2]
        Jx = sig*E0*np.exp(1j*(k*(z-srcLoc)+omega(f)*t))
        Jy = np.zeros_like(z)
        Jz = np.zeros_like(z)
        return Jx, Jy, Jz
    else:
        raise NotImplementedError() 

Example 28

def H_field_from_SheetCurruent(XYZ, srcLoc, sig, f, E0=1., orientation='X', kappa=0., epsr=1., t=0.):
    """
        Plane wave propagating downward (negative z (depth))
    """

    XYZ = Utils.asArray_N_x_Dim(XYZ, 3)
    # Check
    if XYZ.shape[0] > 1 & f.shape[0] > 1:
        raise Exception("I/O type error: For multiple field locations only a single frequency can be specified.")

    mu = mu_0*(1+kappa)
    epsilon = epsilon_0*epsr
    sig_hat = sig + 1j*omega(f)*epsilon
    k  = np.sqrt( omega(f)**2. *mu*epsilon -1j*omega(f)*mu*sig )
    Z = omega(f)*mu/k
    if orientation == "X":
        z = XYZ[:,2]
        Hx = np.zeros_like(z)
        Hy = E0/Z*np.exp(1j*(k*(z-srcLoc)+omega(f)*t))
        Hz = np.zeros_like(z)
        return Hx, Hy, Hz
    else:
        raise NotImplementedError() 

Example 29

def B_field_from_SheetCurruent(XYZ, srcLoc, sig, f, E0=1., orientation='X', kappa=0., epsr=1., t=0.):
    """
        Plane wave propagating downward (negative z (depth))
    """

    XYZ = Utils.asArray_N_x_Dim(XYZ, 3)
    # Check
    if XYZ.shape[0] > 1 & f.shape[0] > 1:
        raise Exception("I/O type error: For multiple field locations only a single frequency can be specified.")

    mu = mu_0*(1+kappa)
    epsilon = epsilon_0*epsr
    sig_hat = sig + 1j*omega(f)*epsilon
    k  = np.sqrt( omega(f)**2. *mu*epsilon -1j*omega(f)*mu*sig )
    Z = omega(f)*mu/k
    if orientation == "X":
        z = XYZ[:,2]
        Bx = mu*np.zeros_like(z)
        By = mu*E0/Z*np.exp(1j*(k*(z-srcLoc)+omega(f)*t))
        Bz = mu*np.zeros_like(z)
        return Bx, By, Bz
    else:
        raise NotImplementedError() 

Example 30

def stup():
    x0 = x[0]
    init_cond = np.zeros_like(X)
    for i in range(0, x_nods_quantity):
        if 0 <= x0 < 0.3:
            init_cond[i] = 0
            x0 += h
        elif(0.3 <= x0 <= 0.7):
            init_cond[i] = 1
            x0 += h
        else:
            init_cond[i] = 0
            x0 += h
    return init_cond
#stupenka end
#different initial conditions end

# different transfer velocity 

Example 31

def iou_loss_val(p, t):
    tp, tt = p.reshape((p.shape[0], 2, 2)), t.reshape((t.shape[0], 2, 2))
    overlaps = np.zeros_like(tp, dtype=np.float32)
    overlaps[:, 0, :] = np.maximum(tp[:, 0, :], tt[:, 0, :])
    overlaps[:, 1, :] = np.minimum(tp[:, 1, :], tt[:, 1, :])
    intersection = overlaps[:, 1, :] - overlaps[:, 0, :]
    bool_overlap = np.min(intersection, axis=1) > 0
    intersection = intersection[:, 0] * intersection[:, 1]
    intersection = np.maximum(intersection, 0.)
    # print "bool", bool_overlap
    # print "Int", intersection
    dims_p = tp[:, 1, :] - tp[:, 0, :]
    areas_p = dims_p[:, 0] * dims_p[:, 1]
    dims_t = tt[:, 1, :] - tt[:, 0, :]
    areas_t = dims_t[:, 0] * dims_t[:, 1]
    union = areas_p + areas_t - intersection
    # print "un", union
    loss = 1. - np.minimum(
        np.exp(np.log(np.abs(intersection)) - np.log(np.abs(union) + 1e-5)),
        1.
    )
    # print loss
    return np.mean(loss) 

Example 32

def test_constant_network_with_tags_dry_run(self):
    shape1 = loom.TypeShape('int64', (3,), 'alpha')
    shape2 = loom.TypeShape('int64', (3,), 'beta')
    value1 = np.array([1, 2, 3], dtype='int64')
    value2 = np.array([4, 5, 6], dtype='int64')
    ops = {'add1': BinaryLoomOp(shape1, tf.add),
           'add2': BinaryLoomOp(shape2, tf.add)}
    the_loom = loom.Loom(named_ops=ops, dry_run=True)
    output_tensor1 = the_loom.output_tensor(shape1)
    output_tensor2 = the_loom.output_tensor(shape2)
    with self.test_session():
      weaver = the_loom.make_weaver()
      c1 = weaver(value1, tag='alpha')
      c2 = weaver(value2, tag='beta')
      result1 = output_tensor1.eval(
          feed_dict=weaver.build_feed_dict([c2, c1]))
      result2 = output_tensor2.eval(
          feed_dict=weaver.build_feed_dict([c2, c1]))
    zero_vec = np.zeros_like(value1)
    self.assertTrue((result1[0] == zero_vec).all())
    self.assertTrue((result2[0] == zero_vec).all()) 

Example 33

def optimise_f2_thresholds(y, p, verbose=True, resolution=100):
    def mf(x):
        p2 = np.zeros_like(p)
        for i in range(17):
            p2[:, i] = (p[:, i] > x[i]).astype(np.int)
        score = fbeta_score(y, p2, beta=2, average='samples')
        return score

    x = [0.2] * 17
    for i in range(17):
        best_i2 = 0
        best_score = 0
        for i2 in range(resolution):
            i2 /= resolution
            x[i] = i2
            score = mf(x)
            if score > best_score:
                best_i2 = i2
                best_score = score
        x[i] = best_i2
        if verbose:
            print(i, best_i2, best_score)

    return x 

Example 34

def buildFock(self):
        """Routine to build the AO basis Fock matrix"""
        if self.direct:
            if self.incFockRst: # restart incremental fock build?
                self.G = formPT(self.P,np.zeros_like(self.P),self.bfs,
                                self.nbasis,self.screen,self.scrTol)
                self.G = 0.5*(self.G + self.G.T) 
                self.F = self.Core.astype('complex') + self.G
            else:
                self.G = formPT(self.P,self.P_old,self.bfs,self.nbasis,
                                self.screen,self.scrTol)
                self.G = 0.5*(self.G + self.G.T) 
                self.F = self.F_old + self.G

        else:
            self.J = np.einsum('pqrs,sr->pq', self.TwoE.astype('complex'),self.P)
            self.K = np.einsum('psqr,sr->pq', self.TwoE.astype('complex'),self.P)
            self.G = 2.*self.J - self.K
            self.F = self.Core.astype('complex') + self.G 

Example 35

def svm_loss(x, y):
    """
    Computes the loss and gradient using for multiclass SVM classification.

    Inputs:
    - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
      for the ith input.
    - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
      0 <= y[i] < C

    Returns a tuple of:
    - loss: Scalar giving the loss
    - dx: Gradient of the loss with respect to x
    """
    N = x.shape[0]
    correct_class_scores = x[np.arange(N), y]
    margins = np.maximum(0, x - correct_class_scores[:, np.newaxis] + 1.0)
    margins[np.arange(N), y] = 0
    loss = np.sum(margins) / N
    num_pos = np.sum(margins > 0, axis=1)
    dx = np.zeros_like(x)
    dx[margins > 0] = 1
    dx[np.arange(N), y] -= num_pos
    dx /= N
    return loss, dx 

Example 36

def sgd_momentum(w, dw, config=None):
    """
    Performs stochastic gradient descent with momentum.

    config format:
    - learning_rate: Scalar learning rate.
    - momentum: Scalar between 0 and 1 giving the momentum value.
      Setting momentum = 0 reduces to sgd.
    - velocity: A numpy array of the same shape as w and dw used to store a moving
      average of the gradients.

    """
    v = config.get('velocity', np.zeros_like(w))
    next_v = config['momentum'] * v - config['learning_rate'] * dw
    next_w = w + next_v
    config['velocity'] = next_v

    return next_w, config 

Example 37

def hls_select(image, thresh=(0, 255)):
    # 1) Convert to HLS color space
    hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
    H = hls[:, :, 0]
    L = hls[:, :, 1]
    S = hls[:, :, 2]
    # 2) Apply a threshold to the S channel
    thresh = (90, 255)
    binary = np.zeros_like(S)
    binary[(S > thresh[0]) & (S <= thresh[1])] = 1
    # 3) Return a binary image of threshold result
    return binary


# Define a function that applies Sobel x and y,
# then computes the direction of the gradient
# and applies a threshold. 

Example 38

def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi/2)):

    # Apply the following steps to img
    # 1) Convert to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    # 2) Take the gradient in x and y separately
    sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
    sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
    # 3) Take the absolute value of the x and y gradients
    abs_sobelx = np.absolute(sobelx)
    abs_sobely = np.absolute(sobely)
    # 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient
    absgraddir = np.arctan2(abs_sobely, abs_sobelx)
    # 5) Create a binary mask where direction thresholds are met
    binary_output = np.zeros_like(absgraddir)
    binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1
    # 6) Return this mask as your binary_output image
    return binary_output


# Define a function that applies Sobel x and y,
# then computes the magnitude of the gradient
# and applies a threshold 

Example 39

def mag_thresh(img, sobel_kernel=3, mag_thresh=(0, 255)):
    # Apply the following steps to img
    # 1) Convert to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    # 2) Take the gradient in x and y separately
    sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
    sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
    # 3) Calculate the magnitude
    gradmag = np.sqrt(sobelx**2 + sobely**2)
    # 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8
    scale_factor = np.max(gradmag)/255
    gradmag = (gradmag/scale_factor).astype(np.uint8)
    # 5) Create a binary mask where mag thresholds are met
    binary_output = np.zeros_like(gradmag)
    binary_output[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1
    # 6) Return this mask as your binary_output image
    return binary_output


# Define a function that applies Sobel x or y,
# then takes an absolute value and applies a threshold.
# Note: calling your function with orient='x', thresh_min=5, thresh_max=100
# should produce output like the example image shown above this quiz. 

Example 40

def abs_sobel_thresh(img, orient='x', thresh_min=0, thresh_max=255):

    # Apply the following steps to img
    # 1) Convert to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    # 2) Take the derivative in x or y given orient = 'x' or 'y'
    if orient == 'x':
        sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
    if orient == 'y':
        sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1)
    # 3) Take the absolute value of the derivative or gradient
    abs_sobel = np.absolute(sobel)
    # 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
    scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
    # 5) Create a mask of 1's where the scaled gradient magnitude
            # is > thresh_min and < thresh_max
    binary_output = np.zeros_like(scaled_sobel)
    binary_output[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1
    # 6) Return this mask as your binary_output image
    return binary_output 

Example 41

def region_of_interest(img, vertices):
    """
    Applies an image mask.
    Only keeps the region of the image defined by the polygon
    formed from `vertices`. The rest of the image is set to black.
    """
    # defining a blank mask to start with
    mask = np.zeros_like(img)
    # defining a 3 channel or 1 channel color to fill the mask with depending on the input image
    if len(img.shape) > 2:
        channel_count = img.shape[2]  # i.e. 3 or 4 depending on your image
        ignore_mask_color = (255,) * channel_count
    else:
        ignore_mask_color = 255
    # filling pixels inside the polygon defined by "vertices" with the fill color
    cv2.fillPoly(mask, vertices, ignore_mask_color)
    # returning the image only where mask pixels are nonzero
    masked_image = cv2.bitwise_and(img, mask)
    return masked_image 

Example 42

def update_grad_input(self, x, grad_output, scale=1):
        x_cols = self.x_cols
        dout = grad_output
        N, C, H, W = self.x_shape
        pool_height, pool_width = self.kW, self.kH
        stride = self.dW
        pool_dim = pool_height * pool_width

        dout_reshaped = dout.transpose(2, 3, 0, 1).flatten()
        dx_cols = np.zeros_like(x_cols)
        dx_cols[:, np.arange(dx_cols.shape[1])] = 1. / pool_dim * dout_reshaped
        dx = col2im_cython(dx_cols, N * C, 1, H, W, pool_height, pool_width,
                           padding=0, stride=stride)

        self.grad_input = dx.reshape(self.x_shape)

        return self.grad_input 

Example 43

def update_grad_input(self, x, grad_output, scale=1):
        x_cols = self.x_cols
        x_cols_argmax = self.x_cols_argmax
        dout = grad_output
        N, C, H, W = x.shape
        pool_height, pool_width = self.kW, self.kH
        stride = self.dW

        dout_reshaped = dout.transpose(2, 3, 0, 1).flatten()
        dx_cols = np.zeros_like(x_cols)
        dx_cols[x_cols_argmax, np.arange(dx_cols.shape[1])] = dout_reshaped
        dx = col2im_cython(dx_cols, N * C, 1, H, W, pool_height, pool_width,
                           padding=0, stride=stride)
        dx = dx.reshape(self.x_shape)
        self.grad_input = dx
        return self.grad_input 

Example 44

def eval_numerical_gradient_array(f, x, df, h=1e-5):
    '''
    Evaluate a numeric gradient for a function that accepts a numpy
    array and returns a numpy array.
    '''
    grad = np.zeros_like(x)
    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
        ix = it.multi_index

        oldval = x[ix]
        x[ix] = oldval + h
        pos = f(x).copy()
        x[ix] = oldval - h
        neg = f(x).copy()
        x[ix] = oldval

        grad[ix] = np.sum((pos - neg) * df) / (2 * h)
        it.iternext()
    return grad 

Example 45

def nesterov(w, dw, config=None):
    '''
    Performs stochastic gradient descent with nesterov momentum.

    config format:
    - learning_rate: Scalar learning rate.
    - momentum: Scalar between 0 and 1 giving the momentum value.
      Setting momentum = 0 reduces to sgd.
    - velocity: A numpy array of the same shape as w and dw used to store a moving
      average of the gradients.
    '''
    if config is None:
        config = {}
    config.setdefault('learning_rate', 1e-2)
    config.setdefault('momentum', 0.9)
    v = config.get('velocity', np.zeros_like(w, dtype=np.float64))

    next_w = None
    prev_v = v
    v = config['momentum'] * v - config['learning_rate'] * dw
    next_w = w - config['momentum'] * prev_v + (1 + config['momentum']) * v
    config['velocity'] = v

    return next_w, config 

Example 46

def sgd_momentum(w, dw, config=None):
    '''
    Performs stochastic gradient descent with momentum.

    config format:
    - learning_rate: Scalar learning rate.
    - momentum: Scalar between 0 and 1 giving the momentum value.
      Setting momentum = 0 reduces to sgd.
    - velocity: A numpy array of the same shape as w and dw used to store a moving
      average of the gradients.
    '''
    if config is None:
        config = {}
    config.setdefault('learning_rate', 1e-2)
    config.setdefault('momentum', 0.9)
    v = config.get('velocity', np.zeros_like(w))

    next_w = None
    v = config['momentum'] * v + config['learning_rate'] * dw
    next_w = w - v
    config['velocity'] = v

    return next_w, config 

Example 47

def test_float(self):
        # offset for alignment test
        for i in range(4):
            assert_array_equal(self.f[i:] > 0, self.ef[i:])
            assert_array_equal(self.f[i:] - 1 >= 0, self.ef[i:])
            assert_array_equal(self.f[i:] == 0, ~self.ef[i:])
            assert_array_equal(-self.f[i:] < 0, self.ef[i:])
            assert_array_equal(-self.f[i:] + 1 <= 0, self.ef[i:])
            r = self.f[i:] != 0
            assert_array_equal(r, self.ef[i:])
            r2 = self.f[i:] != np.zeros_like(self.f[i:])
            r3 = 0 != self.f[i:]
            assert_array_equal(r, r2)
            assert_array_equal(r, r3)
            # check bool == 0x1
            assert_array_equal(r.view(np.int8), r.astype(np.int8))
            assert_array_equal(r2.view(np.int8), r2.astype(np.int8))
            assert_array_equal(r3.view(np.int8), r3.astype(np.int8))

            # isnan on amd64 takes the same code path
            assert_array_equal(np.isnan(self.nf[i:]), self.ef[i:]) 

Example 48

def test_double(self):
        # offset for alignment test
        for i in range(2):
            assert_array_equal(self.d[i:] > 0, self.ed[i:])
            assert_array_equal(self.d[i:] - 1 >= 0, self.ed[i:])
            assert_array_equal(self.d[i:] == 0, ~self.ed[i:])
            assert_array_equal(-self.d[i:] < 0, self.ed[i:])
            assert_array_equal(-self.d[i:] + 1 <= 0, self.ed[i:])
            r = self.d[i:] != 0
            assert_array_equal(r, self.ed[i:])
            r2 = self.d[i:] != np.zeros_like(self.d[i:])
            r3 = 0 != self.d[i:]
            assert_array_equal(r, r2)
            assert_array_equal(r, r3)
            # check bool == 0x1
            assert_array_equal(r.view(np.int8), r.astype(np.int8))
            assert_array_equal(r2.view(np.int8), r2.astype(np.int8))
            assert_array_equal(r3.view(np.int8), r3.astype(np.int8))

            # isnan on amd64 takes the same code path
            assert_array_equal(np.isnan(self.nd[i:]), self.ed[i:]) 

Example 49

def test_round(self):
        def check_round(arr, expected, *round_args):
            assert_equal(arr.round(*round_args), expected)
            # With output array
            out = np.zeros_like(arr)
            res = arr.round(*round_args, out=out)
            assert_equal(out, expected)
            assert_equal(out, res)

        check_round(np.array([1.2, 1.5]), [1, 2])
        check_round(np.array(1.5), 2)
        check_round(np.array([12.2, 15.5]), [10, 20], -1)
        check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1)
        # Complex rounding
        check_round(np.array([4.5 + 1.5j]), [4 + 2j])
        check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1) 

Example 50

def test_basic(self):
        dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128,
               np.longdouble, np.clongdouble]
        for dt in dts:
            c = np.ones(53, dtype=np.bool)
            assert_equal(np.where( c, dt(0), dt(1)), dt(0))
            assert_equal(np.where(~c, dt(0), dt(1)), dt(1))
            assert_equal(np.where(True, dt(0), dt(1)), dt(0))
            assert_equal(np.where(False, dt(0), dt(1)), dt(1))
            d = np.ones_like(c).astype(dt)
            e = np.zeros_like(d)
            r = d.astype(dt)
            c[7] = False
            r[7] = e[7]
            assert_equal(np.where(c, e, e), e)
            assert_equal(np.where(c, d, e), r)
            assert_equal(np.where(c, d, e[0]), r)
            assert_equal(np.where(c, d[0], e), r)
            assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2])
            assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2])
            assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3])
            assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3])
            assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2])
            assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3])
            assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3]) 
点赞