The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def cart2sph(x, y, z): """ Converts cartesian coordinates `x`, `y`, `z` into a longitude and latitude. x=0, y=0, z=0 is assumed to correspond to the center of the globe. Returns lon and lat in radians. Parameters ---------- `x`, `y`, `z` : Arrays of cartesian coordinates Returns ------- lon : Longitude in radians lat : Latitude in radians """ r = np.sqrt(x**2 + y**2 + z**2) lat = np.arcsin(z/r) lon = np.arctan2(y, x) return lon, lat
Example 2
def getTrainTestKernel(self, params, Xtest): self.checkParams(params) ell2 = np.exp(2*params[0]) z = Xtest / np.sqrt(Xtest.shape[1]) S = 1 + self.X_scaled.dot(z.T) sz = 1 + np.sum(z**2, axis=1) sqrtEll2Psx = np.sqrt(ell2+self.sx) sqrtEll2Psz = np.sqrt(ell2+sz) K = S / np.outer(sqrtEll2Psx, sqrtEll2Psz) return np.arcsin(K)
Example 3
def _B_0_function(self, z): """ calculate B_0(z) function defined in: Gould A. 1994 ApJ 421L, 71 "Proper motions of MACHOs http://adsabs.harvard.edu/abs/1994ApJ...421L..71G Yoo J. et al. 2004 ApJ 603, 139 "OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens" http://adsabs.harvard.edu/abs/2004ApJ...603..139Y """ out = 4. * z / np.pi function = lambda x: (1.-value**2*np.sin(x)**2)**.5 for (i, value) in enumerate(z): if value < 1.: out[i] *= ellipe(value*value) else: out[i] *= integrate.quad(function, 0., np.arcsin(1./value))[0] return out
Example 4
def distance(self, lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1 = lon1*pi/180 lat1 = lat1*pi/180 lon2 = lon2*pi/180 lat2 = lat2*pi/180 # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2 c = 2 * np.arcsin(np.sqrt(a)) km = 6371 * c return km
Example 5
def distance(self, lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1 = lon1*pi/180 lat1 = lat1*pi/180 lon2 = lon2*pi/180 lat2 = lat2*pi/180 # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = numpy.sin(dlat/2)**2 + numpy.cos(lat1) * numpy.cos(lat2) * numpy.sin(dlon/2)**2 c = 2 * numpy.arcsin(numpy.sqrt(a)) km = 6371 * c return km
Example 6
def distance(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1 = lon1*pi/180 lat1 = lat1*pi/180 lon2 = lon2*pi/180 lat2 = lat2*pi/180 # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2 c = 2 * np.arcsin(np.sqrt(a)) km = 6371 * c return km
Example 7
def distance(self, lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1 = lon1*pi/180 lat1 = lat1*pi/180 lon2 = lon2*pi/180 lat2 = lat2*pi/180 # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = numpy.sin(dlat/2)**2 + numpy.cos(lat1) * numpy.cos(lat2) * numpy.sin(dlon/2)**2 c = 2 * numpy.arcsin(numpy.sqrt(a)) km = 6371 * c return km
Example 8
def distance(self, lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1 = lon1*pi/180 lat1 = lat1*pi/180 lon2 = lon2*pi/180 lat2 = lat2*pi/180 # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = numpy.sin(dlat/2)**2 + numpy.cos(lat1) * numpy.cos(lat2) * numpy.sin(dlon/2)**2 c = 2 * numpy.arcsin(numpy.sqrt(a)) km = 6371 * c return km
Example 9
def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
Example 10
def test_branch_cuts_complex64(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
Example 11
def test_against_cmath(self): import cmath points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
Example 12
def azimuth(_lAz_data): _inc = _lAz_data[0] _lat = _lAz_data[1] velocity_eq = _lAz_data[2] @jit(nopython=True) def _az_calc(): inert_az = np.arcsin(max(min(np.cos(np.deg2rad(_inc)) / np.cos(np.deg2rad(_lat)), 1), -1)) _VXRot = _lAz_data[3] * np.sin(inert_az) - velocity_eq * np.cos(np.deg2rad(_lat)) _VYRot = _lAz_data[3] * np.cos(inert_az) return np.rad2deg(np.fmod(np.arctan2(_VXRot, _VYRot) + (2 * pi), (2 * pi))) _az = _az_calc() if _lAz_data[4] == "Ascending": return _az if _lAz_data[4] == "Descending": if _az <= 90: return 180 - _az elif _az >= 270: return 540 - _az
Example 13
def azimuth(_lAz_data): _inc = _lAz_data[0] _lat = _lAz_data[1] velocity_eq = _lAz_data[2] @jit(nopython=True) def _az_calc(): inert_az = np.arcsin(max(min(np.cos(np.deg2rad(_inc)) / np.cos(np.deg2rad(_lat)), 1), -1)) _VXRot = _lAz_data[3] * np.sin(inert_az) - velocity_eq * np.cos(np.deg2rad(_lat)) _VYRot = _lAz_data[3] * np.cos(inert_az) return np.rad2deg(np.fmod(np.arctan2(_VXRot, _VYRot) + (2 * pi), (2 * pi))) _az = _az_calc() if _lAz_data[4] == "Ascending": return _az if _lAz_data[4] == "Descending": if _az <= 90: return 180 - _az elif _az >= 270: return 540 - _az
Example 14
def azimuth(_lAz_data): _inc = _lAz_data[0] _lat = _lAz_data[1] velocity_eq = _lAz_data[2] @jit(nopython=True) def _az_calc(): inert_az = np.arcsin(max(min(np.cos(np.deg2rad(_inc)) / np.cos(np.deg2rad(_lat)), 1), -1)) _VXRot = _lAz_data[3] * np.sin(inert_az) - velocity_eq * np.cos(np.deg2rad(_lat)) _VYRot = _lAz_data[3] * np.cos(inert_az) return np.rad2deg(np.fmod(np.arctan2(_VXRot, _VYRot) + (2 * pi), (2 * pi))) _az = _az_calc() if _lAz_data[4] == "Ascending": return _az if _lAz_data[4] == "Descending": if _az <= 90: return 180 - _az elif _az >= 270: return 540 - _az
Example 15
def azimuth(_lAz_data): _inc = _lAz_data[0] _lat = _lAz_data[1] velocity_eq = _lAz_data[2] @jit(nopython=True) def _az_calc(): inert_az = np.arcsin(max(min(np.cos(np.deg2rad(_inc)) / np.cos(np.deg2rad(_lat)), 1), -1)) _VXRot = _lAz_data[3] * np.sin(inert_az) - velocity_eq * np.cos(np.deg2rad(_lat)) _VYRot = _lAz_data[3] * np.cos(inert_az) return np.rad2deg(np.fmod(np.arctan2(_VXRot, _VYRot) + 360, 360)) _az = _az_calc() if _lAz_data[4] == "Ascending": return _az if _lAz_data[4] == "Descending": if _az <= 90: return 180 - _az elif _az >= 270: return 540 - _az
Example 16
def sun_elevation(hUTC, dayofyear, year, latitude, longitude): """ Sun elevation Args: hUTC: fractional hour (UTC time) dayofyear (int): year (int): latitude (float): the location latitude (degrees) longitude (float): the location longitude (degrees) Returns: (float) the sun elevation (degrees) Details: World Meteorological Organization (2006).Guide to meteorological instruments and methods of observation. Geneva, Switzerland. """ dec = declination(hUTC, dayofyear, year) lat = numpy.radians(latitude) ha = numpy.radians(hour_angle(hUTC, dayofyear, year, longitude) * 15) sinel = numpy.sin(dec) * numpy.sin(lat) + numpy.cos(dec) * numpy.cos( lat) * numpy.cos(ha) return numpy.degrees(numpy.arcsin(sinel))
Example 17
def distance(lat1, lon1, lat2, lon2): """ Computes the great circle distance between two points using the haversine formula. Values can be vectors. """ # Convert from degrees to radians pi = 3.14159265 lon1 = lon1 * 2 * pi / 360 lat1 = lat1 * 2 * pi / 360 lon2 = lon2 * 2 * pi / 360 lat2 = lat2 * 2 * pi / 360 dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2)**2 c = 2 * np.arcsin(np.sqrt(a)) distance = 6.367e6 * c return distance
Example 18
def q_to_euler(q): """Converts Quaternions to Euler angles. Parameters ---------- q : array_like Array holding Quaternions. Returns ------- phi : float `phi` angle in radians. theta :float `theta` angle in radians. psi : float `psi` angle in radians. """ phi = np.arctan2(2*(q[0]*q[1]+q[2]*q[3]),(q[0]**2+q[3]**2-q[1]**2-q[2]**2)) theta = np.arcsin(2*(q[0]*q[2]-q[1]*q[3])) psi = np.arctan2(2*(q[0]*q[3]+q[1]*q[2]),(q[0]**2+q[1]**2-q[2]**2-q[3]**2)) return phi, theta, psi
Example 19
def convert_to_euler(R): """Compute the euler angles of this rotation. Refer to [http://www.staff.city.ac.uk/~sbbh653/publications/euler.pdf]""" alpha, beta, gamma = 0, 0, 0 if not np.isclose(np.abs(R[2,0]), 1): beta = - np.arcsin(R[2,0]) alpha = np.arctan2(R[2,1] / np.cos(beta), R[2,2] / np.cos(beta)) gamma = np.arctan2(R[1,0] / np.cos(beta), R[0,0] / np.cos(beta)) else: gamma = 0 if np.isclose(R[2,0], -1): beta = np.pi / 2 alpha = gamma + np.arctan2(R[0,1], R[0,2]) else: beta = - np.pi / 2 alpha = - gamma + np.arctan2(-R[0,1], -R[0,2]) return np.array([alpha, beta, gamma])
Example 20
def azimuth(_lAz_data): _inc = _lAz_data[0] _lat = _lAz_data[1] velocity_eq = _lAz_data[2] @jit(nopython=True) def _az_calc(): inert_az = np.arcsin(max(min(np.cos(np.deg2rad(_inc)) / np.cos(np.deg2rad(_lat)), 1), -1)) _VXRot = _lAz_data[3] * np.sin(inert_az) - velocity_eq * np.cos(np.deg2rad(_lat)) _VYRot = _lAz_data[3] * np.cos(inert_az) return np.rad2deg(np.fmod(np.arctan2(_VXRot, _VYRot) + (2 * pi), (2 * pi))) _az = _az_calc() if _lAz_data[4] == "Ascending": return _az if _lAz_data[4] == "Descending": if _az <= 90: return 180 - _az elif _az >= 270: return 540 - _az
Example 21
def azimuth(_lAz_data): _inc = _lAz_data[0] _lat = _lAz_data[1] velocity_eq = _lAz_data[2] def _az_calc(): inert_az = np.arcsin(max(min(np.cos(np.deg2rad(_inc)) / np.cos(np.deg2rad(_lat)), 1), -1)) _VXRot = _lAz_data[3] * np.sin(inert_az) - velocity_eq * np.cos(np.deg2rad(_lat)) _VYRot = _lAz_data[3] * np.cos(inert_az) return np.rad2deg(np.fmod(np.arctan2(_VXRot, _VYRot) + 360, 360)) _az = _az_calc() if _lAz_data[4] == "Ascending": return _az if _lAz_data[4] == "Descending": if _az <= 90: return 180 - _az elif _az >= 270: return 540 - _az
Example 22
def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
Example 23
def test_branch_cuts_complex64(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
Example 24
def test_against_cmath(self): import cmath points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
Example 25
def archav(hav): """ Formula for the inverse haversine Parameters ----------- hav : (float) Haversine of an angle Returns --------- alpha : (float) Angle in radians """ alpha = 2.0 * np.arcsin(np.sqrt(hav)) return alpha
Example 26
def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
Example 27
def test_branch_cuts_complex64(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
Example 28
def test_against_cmath(self): import cmath points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
Example 29
def _to_hpr_single(dcm): pitch = np.arcsin(dcm[2, 1]) if np.abs(pitch) < 0.5 * np.pi - 1e-3: heading = np.arctan2(dcm[0, 1], dcm[1, 1]) roll = np.arctan2(-dcm[2, 0], dcm[2, 2]) elif pitch > 0: roll = 0 heading = np.arctan2(-dcm[0, 2] - dcm[1, 0], dcm[0, 0] - dcm[1, 2]) else: roll = 0 heading = np.arctan2(dcm[0, 2] - dcm[1, 0], dcm[0, 0] + dcm[1, 2]) if heading < 0: heading += 2 * np.pi if heading == 2 * np.pi: heading = 0 return heading, pitch, roll
Example 30
def _to_llw_array(dcm): lat = np.arcsin(dcm[:, 2, 2]) lon = np.empty(dcm.shape[0]) wan = np.empty(dcm.shape[0]) mask = np.abs(lat) < 0.5 * np.pi - 1e-3 lon[mask] = np.arctan2(dcm[mask, 1, 2], dcm[mask, 0, 2]) wan[mask] = np.arctan2(dcm[mask, 2, 0], dcm[mask, 2, 1]) mask = ~mask lon[mask] = 0 l_mask = mask & (lat > 0) wan[l_mask] = np.arctan2(-dcm[l_mask, 0, 0] - dcm[l_mask, 1, 1], dcm[l_mask, 1, 0] - dcm[l_mask, 0, 1]) l_mask = mask & (lat < 0) wan[l_mask] = np.arctan2(dcm[l_mask, 0, 0] - dcm[l_mask, 1, 1], dcm[l_mask, 0, 1] + dcm[l_mask, 1, 0]) return lat, lon, wan
Example 31
def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
Example 32
def test_branch_cuts_complex64(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
Example 33
def test_against_cmath(self): import cmath points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
Example 34
def apexes(self): '''Returns the positions of the apexes of HR and AR as a tuple.''' if self.HRK == 0.: apex1 = self.HRCenter else: theta1 = np.arcsin(self.Dia * self.ARK/2.)\ if np.abs(self.Dia * self.ARK/2.) < 1. else np.pi/2. apex1 = self.HRCenter - (1-np.cos(theta1))*self.HRNorm/self.HRK if self.ARK == 0.: apex2 = self.ARCenter else: theta2 = np.arcsin(self.Dia * self.ARK/(2.*np.cos(self.Wedge)))\ if np.abs(self.Dia * self.ARK/(2.*np.cos(self.Wedge))) < 1.\ else np.pi/2. apex2 = self.ARCenter - (1-np.cos(theta2))*self.ARNorm/self.ARK return apex1, apex2
Example 35
def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
Example 36
def test_branch_cuts_complex64(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
Example 37
def test_against_cmath(self): import cmath points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
Example 38
def galToCel(ll, bb): """ Converts Galactic (deg) to Celestial J2000 (deg) coordinates """ bb = numpy.radians(bb) sin_bb = numpy.sin(bb) cos_bb = numpy.cos(bb) ll = numpy.radians(ll) ra_gp = numpy.radians(192.85948) de_gp = numpy.radians(27.12825) lcp = numpy.radians(122.932) sin_lcp_ll = numpy.sin(lcp - ll) cos_lcp_ll = numpy.cos(lcp - ll) sin_d = (numpy.sin(de_gp) * sin_bb) \ + (numpy.cos(de_gp) * cos_bb * cos_lcp_ll) ramragp = numpy.arctan2(cos_bb * sin_lcp_ll, (numpy.cos(de_gp) * sin_bb) \ - (numpy.sin(de_gp) * cos_bb * cos_lcp_ll)) dec = numpy.arcsin(sin_d) ra = (ramragp + ra_gp + (2. * numpy.pi)) % (2. * numpy.pi) return numpy.degrees(ra), numpy.degrees(dec)
Example 39
def celToGal(ra, dec): """ Converts Celestial J2000 (deg) to Calactic (deg) coordinates """ dec = numpy.radians(dec) sin_dec = numpy.sin(dec) cos_dec = numpy.cos(dec) ra = numpy.radians(ra) ra_gp = numpy.radians(192.85948) de_gp = numpy.radians(27.12825) sin_ra_gp = numpy.sin(ra - ra_gp) cos_ra_gp = numpy.cos(ra - ra_gp) lcp = numpy.radians(122.932) sin_b = (numpy.sin(de_gp) * sin_dec) \ + (numpy.cos(de_gp) * cos_dec * cos_ra_gp) lcpml = numpy.arctan2(cos_dec * sin_ra_gp, (numpy.cos(de_gp) * sin_dec) \ - (numpy.sin(de_gp) * cos_dec * cos_ra_gp)) bb = numpy.arcsin(sin_b) ll = (lcp - lcpml + (2. * numpy.pi)) % (2. * numpy.pi) return numpy.degrees(ll), numpy.degrees(bb)
Example 40
def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
Example 41
def test_branch_cuts_complex64(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
Example 42
def test_against_cmath(self): import cmath points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
Example 43
def ph_dec(m_phs, m_phc, mode='angle'): if mode == 'sign': m_bs = np.arcsin(m_phs) m_bc = np.arccos(m_phc) m_ph = np.sign(m_bs) * np.abs(m_bc) elif mode == 'angle': m_ph = np.angle(m_phc + m_phs * 1j) return m_ph #============================================================================== # From 'analysis_with_del_comp_and_ph_encoding_from_files' # f0_type: 'f0', 'lf0'
Example 44
def refraction_plane(k_vec, n_vec, n1, n2): ''' k_vec: the directional vector of the incidental ray n_vec: the normal vector of the incidental plane n1, n2: the refractive indices ''' s_vec, p_vec, sin_ins = incident_plane(k_vec, n_vec) sin_ref = n1*sin_ins /n2 # sin(phi') a_inc = np.arcsin(sin_ins) a_ref = np.arcsin(sin_ref) a_diff = a_inc-a_ref kr_vec = np.cos(a_diff)*k_vec -np.sin(a_diff)*p_vec if(kr_vec[2]>0): print(a_diff, k_vec) # next, let's calculate the reflectance cos_inc = np.cos(a_inc) cos_ref = np.cos(a_ref) Rs = ((n1*cos_inc - n2*cos_ref)/(n1*cos_inc + n2*cos_ref))**2 Rp = ((n1*cos_ref - n2*cos_inc)/(n1*cos_ref + n2*cos_inc))**2 return kr_vec, Rs, Rp # done with refraction_plane
Example 45
def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2)
Example 46
def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1
Example 47
def test_branch_cuts_complex64(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64 yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64 yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
Example 48
def test_against_cmath(self): import cmath points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
Example 49
def transform_non_affine(self, xy): x = xy[:, 0:1] y = xy[:, 1:2] clong = self._center_longitude clat = self._center_latitude p = np.sqrt(x*x + y*y) p = np.where(p == 0.0, 1e-9, p) c = self._calculate_c(p) sin_c = np.sin(c) cos_c = np.cos(c) lat = np.arcsin(cos_c*np.sin(clat) + ((y*sin_c*np.cos(clat)) / p)) lon = clong + np.arctan( (x*sin_c) / (p*np.cos(clat)*cos_c - y*np.sin(clat)*sin_c)) return np.concatenate((lon, lat), 1)
Example 50
def getTrainKernel(self, params): self.checkParams(params) if (self.sameParams(params)): return self.cache['getTrainKernel'] ell2 = np.exp(2*params[0]) sqrt_ell2PSx = np.sqrt(ell2+self.sx) K = self.S / np.outer(sqrt_ell2PSx, sqrt_ell2PSx) self.cache['K'] = K K_arcsin = np.arcsin(K) self.cache['getTrainKernel'] = K_arcsin self.saveParams(params) return K_arcsin