The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def get_image_descriptor_for_image(image, model): im = cv2.resize(image, (224, 224)).astype(np.float32) dim_ordering = K.image_dim_ordering() if dim_ordering == 'th': # 'RGB'->'BGR' im = im[::-1, :, :] # Zero-center by mean pixel im[0, :, :] -= 103.939 im[1, :, :] -= 116.779 im[2, :, :] -= 123.68 else: # 'RGB'->'BGR' im = im[:, :, ::-1] # Zero-center by mean pixel im[:, :, 0] -= 103.939 im[:, :, 1] -= 116.779 im[:, :, 2] -= 123.68 im = im.transpose((2, 0, 1)) im = np.expand_dims(im, axis=0) inputs = [K.learning_phase()] + model.inputs _convout1_f = K.function(inputs, [model.layers[33].output]) return _convout1_f([0] + [im])
Example 2
def encode_jpeg(arr): assert arr.dtype == np.uint8 # simulate multi-channel array for single channel arrays if len(arr.shape) == 3: arr = np.expand_dims(arr, 3) # add channels to end of x,y,z arr = arr.transpose((3,2,1,0)) # channels, z, y, x reshaped = arr.reshape(arr.shape[3] * arr.shape[2], arr.shape[1] * arr.shape[0]) if arr.shape[0] == 1: img = Image.fromarray(reshaped, mode='L') elif arr.shape[0] == 3: img = Image.fromarray(reshaped, mode='RGB') else: raise ValueError("Number of image channels should be 1 or 3. Got: {}".format(arr.shape[3])) f = io.BytesIO() img.save(f, "JPEG") return f.getvalue()
Example 3
def model(self, features, labels): x = features["observation"] x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu) x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu) actions = tf.one_hot(tf.reshape(features["action"],[-1]), depth=6, on_value=1.0, off_value=0.0, axis=1) x = tf.concat(1, [tf.contrib.layers.flatten(x), actions]) x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu) x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu) logits = tf.contrib.layers.fully_connected(x, 1, activation_fn=None) prediction = tf.sigmoid(logits, name="prediction") loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits, tf.expand_dims(labels, axis=1)),name="loss") train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=self.learning_rate) tf.add_to_collection('prediction', prediction) tf.add_to_collection('loss', loss) return prediction, loss, train_op
Example 4
def get_freqs (signals, nbins=0): """ extracts relative fft frequencies and bins them in n bins :param signals: 1D or 2D signals :param nbins: number of bins used as output (default: maximum possible) """ if signals.ndim == 1: signals = np.expand_dims(signals,0) sfreq = use_sfreq if nbins == 0: nbins = int(sfreq/2) nsamp = float(signals.shape[1]) assert nsamp/2 >= nbins, 'more bins than fft results' feats = np.zeros((int(signals.shape[0]),nbins),dtype='float32') w = (fft(signals,axis=1)).real for i in np.arange(nbins): feats[:,i] = np.sum(np.abs(w[:,np.arange(i*nsamp/sfreq,(i+1)*nsamp/sfreq, dtype=int)]),axis=1) sum_abs_pow = np.sum(feats,axis=1) feats = (feats.T / sum_abs_pow).T return feats
Example 5
def format_img(img, C): img_min_side = float(C.im_size) (height,width,_) = img.shape if width <= height: f = img_min_side/width new_height = int(f * height) new_width = int(img_min_side) else: f = img_min_side/height new_width = int(f * width) new_height = int(img_min_side) fx = width/float(new_width) fy = height/float(new_height) img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC) img = img[:, :, (2, 1, 0)] img = img.astype(np.float32) img[:, :, 0] -= C.img_channel_mean[0] img[:, :, 1] -= C.img_channel_mean[1] img[:, :, 2] -= C.img_channel_mean[2] img /= C.img_scaling_factor img = np.transpose(img, (2, 0, 1)) img = np.expand_dims(img, axis=0) return img, fx, fy
Example 6
def pull_item(self, index): img_id = self.ids[index] target = ET.parse(self._annopath % img_id).getroot() img = cv2.imread(self._imgpath % img_id) height, width, channels = img.shape if self.target_transform is not None: target = self.target_transform(target, width, height) if self.transform is not None: target = np.array(target) img, boxes, labels = self.transform(img, target[:, :4], target[:, 4]) # to rgb img = img[:, :, (2, 1, 0)] # img = img.transpose(2, 0, 1) target = np.hstack((boxes, np.expand_dims(labels, axis=1))) return torch.from_numpy(img).permute(2, 0, 1), target, height, width # return torch.from_numpy(img), target, height, width
Example 7
def model(self, features, labels): x = features["observation"] x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu) x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu) x = tf.contrib.layers.flatten(x) x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu) x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu) logits = tf.contrib.layers.fully_connected(x, 1, activation_fn=None) prediction = tf.sigmoid(logits) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits, tf.expand_dims(labels, axis=1))) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) tf.add_to_collection('prediction', prediction) tf.add_to_collection('loss', loss) return prediction, loss, train_op
Example 8
def normalize_bitmap(bitmap): # pad the bitmap to make it squared pad_size = abs(bitmap.shape[0]-bitmap.shape[1]) // 2 if bitmap.shape[0] < bitmap.shape[1]: pad_dims = ((pad_size, pad_size), (0, 0)) else: pad_dims = ((0, 0), (pad_size, pad_size)) bitmap = np.lib.pad(bitmap, pad_dims, mode='constant', constant_values=255) # rescale and add empty border bitmap = scipy.misc.imresize(bitmap, (64 - 4*2, 64 - 4*2)) bitmap = np.lib.pad(bitmap, ((4, 4), (4, 4)), mode='constant', constant_values=255) assert bitmap.shape == (64, 64) bitmap = np.expand_dims(bitmap, axis=0) assert bitmap.shape == (1, 64, 64) return bitmap
Example 9
def get_feature_map_4(model, im): im = im.astype(np.float32) dim_ordering = K.image_dim_ordering() if dim_ordering == 'th': # 'RGB'->'BGR' im = im[::-1, :, :] # Zero-center by mean pixel im[0, :, :] -= 103.939 im[1, :, :] -= 116.779 im[2, :, :] -= 123.68 else: # 'RGB'->'BGR' im = im[:, :, ::-1] # Zero-center by mean pixel im[:, :, 0] -= 103.939 im[:, :, 1] -= 116.779 im[:, :, 2] -= 123.68 im = im.transpose((2, 0, 1)) im = np.expand_dims(im, axis=0) inputs = [K.learning_phase()] + model.inputs _convout1_f = K.function(inputs, [model.layers[23].output]) feature_map = _convout1_f([0] + [im]) feature_map = np.array([feature_map]) feature_map = feature_map[0, 0, 0, :, :, :] return feature_map
Example 10
def get_conv_image_descriptor_for_image(image, model): im = cv2.resize(image, (224, 224)).astype(np.float32) dim_ordering = K.image_dim_ordering() if dim_ordering == 'th': # 'RGB'->'BGR' im = im[::-1, :, :] # Zero-center by mean pixel im[0, :, :] -= 103.939 im[1, :, :] -= 116.779 im[2, :, :] -= 123.68 else: # 'RGB'->'BGR' im = im[:, :, ::-1] # Zero-center by mean pixel im[:, :, 0] -= 103.939 im[:, :, 1] -= 116.779 im[:, :, 2] -= 123.68 im = im.transpose((2, 0, 1)) im = np.expand_dims(im, axis=0) inputs = [K.learning_phase()] + model.inputs _convout1_f = K.function(inputs, [model.layers[31].output]) return _convout1_f([0] + [im])
Example 11
def _prepare_image(I): assert isinstance(I, np.ndarray), 'plugin error, should pass numpy array here' assert I.ndim == 2 or I.ndim == 3 or I.ndim == 4 if I.ndim == 4: # NCHW if I.shape[1] == 1: # N1HW I = np.concatenate((I, I, I), 1) # N3HW assert I.shape[1] == 3 I = make_grid(I) # 3xHxW if I.ndim == 3 and I.shape[0] == 1: # 1xHxW I = np.concatenate((I, I, I), 0) # 3xHxW if I.ndim == 2: # HxW I = np.expand_dims(I, 0) # 1xHxW I = np.concatenate((I, I, I), 0) # 3xHxW I = I.transpose(1, 2, 0) return I
Example 12
def validate(model): dice_coefs = [] for image_path, label_path in zip(df_val["image"], df_val["label"]): image = load_nifti(image_path) label = load_nifti(label_path) centers = [[], [], []] for img_len, len_out, center, n_tile in zip(image.shape, args.output_shape, centers, args.n_tiles): assert img_len < len_out * n_tile, "{} must be smaller than {} x {}".format(img_len, len_out, n_tile) stride = int((img_len - len_out) / (n_tile - 1)) center.append(len_out / 2) for i in range(n_tile - 2): center.append(center[-1] + stride) center.append(img_len - len_out / 2) output = np.zeros((dataset["n_classes"],) + image.shape[:-1]) for x, y, z in itertools.product(*centers): patch = crop_patch(image, [x, y, z], args.input_shape) patch = np.expand_dims(patch, 0) patch = xp.asarray(patch) slices_out = [slice(center - len_out / 2, center + len_out / 2) for len_out, center in zip(args.output_shape, [x, y, z])] slices_in = [slice((len_in - len_out) / 2, len_in - (len_in - len_out) / 2) for len_out, len_in, in zip(args.output_shape, args.input_shape)] output[slice(None), slices_out[0], slices_out[1], slices_out[2]] += chainer.cuda.to_cpu(model(patch).data[0, slice(None), slices_in[0], slices_in[1], slices_in[2]]) y = np.argmax(output, axis=0).astype(np.int32) dice_coefs.append(dice_coefficients(y, label, labels=range(dataset["n_classes"]))) dice_coefs = np.array(dice_coefs) return np.mean(dice_coefs, axis=0)
Example 13
def preprocess_images(images): if images.shape[0] < 4: # single image x_t = images[0] x_t = imresize(x_t, (80, 80)) x_t = x_t.astype("float") x_t /= 255.0 s_t = np.stack((x_t, x_t, x_t, x_t), axis=2) else: # 4 images xt_list = [] for i in range(images.shape[0]): x_t = imresize(images[i], (80, 80)) x_t = x_t.astype("float") x_t /= 255.0 xt_list.append(x_t) s_t = np.stack((xt_list[0], xt_list[1], xt_list[2], xt_list[3]), axis=2) s_t = np.expand_dims(s_t, axis=0) return s_t ############################# main ###############################
Example 14
def preprocess_images(images): if images.shape[0] < 4: # single image x_t = images[0] x_t = imresize(x_t, (80, 80)) x_t = x_t.astype("float") x_t /= 255.0 s_t = np.stack((x_t, x_t, x_t, x_t), axis=2) else: # 4 images xt_list = [] for i in range(images.shape[0]): x_t = imresize(images[i], (80, 80)) x_t = x_t.astype("float") x_t /= 255.0 xt_list.append(x_t) s_t = np.stack((xt_list[0], xt_list[1], xt_list[2], xt_list[3]), axis=2) s_t = np.expand_dims(s_t, axis=0) return s_t
Example 15
def Minibatch_Discriminator(input, num_kernels=100, dim_per_kernel=5, init=False, name='MD'): num_inputs=df_dim*4 theta = tf.get_variable(name+"/theta",[num_inputs, num_kernels, dim_per_kernel], initializer=tf.random_normal_initializer(stddev=0.05)) log_weight_scale = tf.get_variable(name+"/lws",[num_kernels, dim_per_kernel], initializer=tf.constant_initializer(0.0)) W = tf.mul(theta, tf.expand_dims(tf.exp(log_weight_scale)/tf.sqrt(tf.reduce_sum(tf.square(theta),0)),0)) W = tf.reshape(W,[-1,num_kernels*dim_per_kernel]) x = input x=tf.reshape(x, [batchsize,num_inputs]) activation = tf.matmul(x, W) activation = tf.reshape(activation,[-1,num_kernels,dim_per_kernel]) abs_dif = tf.mul(tf.reduce_sum(tf.abs(tf.sub(tf.expand_dims(activation,3),tf.expand_dims(tf.transpose(activation,[1,2,0]),0))),2), 1-tf.expand_dims(tf.constant(np.eye(batchsize),dtype=np.float32),1)) f = tf.reduce_sum(tf.exp(-abs_dif),2)/tf.reduce_sum(tf.exp(-abs_dif)) print(f.get_shape()) print(input.get_shape()) return tf.concat(1,[x, f])
Example 16
def do_eval(sess,model,evalX,evalY,batch_size,vocabulary_index2word_label,eval_decoder_input=None): #ii=0 number_examples=len(evalX) eval_loss,eval_acc,eval_counter=0.0,0.0,0 for start,end in zip(range(0,number_examples,batch_size),range(batch_size,number_examples,batch_size)): feed_dict = {model.query: evalX[start:end],model.story:np.expand_dims(evalX[start:end],axis=1), model.dropout_keep_prob: 1} if not FLAGS.multi_label_flag: feed_dict[model.answer_single] = evalY[start:end] else: feed_dict[model.answer_multilabel] = evalY[start:end] curr_eval_loss, logits,curr_eval_acc,pred= sess.run([model.loss_val,model.logits,model.accuracy,model.predictions],feed_dict)#curr_eval_acc--->textCNN.accuracy eval_loss,eval_acc,eval_counter=eval_loss+curr_eval_loss,eval_acc+curr_eval_acc,eval_counter+1 #if ii<20: #print("1.evalX[start:end]:",evalX[start:end]) #print("2.evalY[start:end]:", evalY[start:end]) #print("3.pred:",pred) #ii=ii+1 return eval_loss/float(eval_counter),eval_acc/float(eval_counter) #?logits????? get label using logits
Example 17
def custom_loss(y_true, y_pred): # Get prediction pred_box_xy = tf.sigmoid(y_pred[..., :2]) pred_box_wh = y_pred[..., 2:4] pred_box_conf = tf.sigmoid(y_pred[..., 4]) # Get ground truth true_box_xy = y_true[..., :2] true_box_wh = y_true[..., 2:4] true_box_conf = y_true[..., 4] # Determine the mask: simply the position of the ground truth boxes (the predictors) true_mask = tf.expand_dims(y_true[..., 4], axis=-1) # Calculate the loss. A scale can be associated with each loss, indicating how important # the loss is. The bigger the scale, more important the loss is. loss_xy = tf.reduce_sum(tf.square(true_box_xy - pred_box_xy) * true_mask) * 1.0 loss_wh = tf.reduce_sum(tf.square(true_box_wh - pred_box_wh) * true_mask) * 1.0 loss_conf = tf.reduce_sum(tf.square(true_box_conf - pred_box_conf)) * 1.2 loss = loss_xy + loss_wh + loss_conf return loss
Example 18
def viterbi_decode(score, transition_params): """ Adapted from Tensorflow implementation. Decode the highest scoring sequence of tags outside of TensorFlow. This should only be used at test time. Args: score: A [seq_len, num_tags] matrix of unary potentials. transition_params: A [num_tags, num_tags] matrix of binary potentials. Returns: viterbi: A [seq_len] list of integers containing the highest scoring tag indicies. viterbi_score: A float containing the score for the Viterbi sequence. """ trellis = numpy.zeros_like(score) backpointers = numpy.zeros_like(score, dtype=numpy.int32) trellis[0] = score[0] for t in range(1, score.shape[0]): v = numpy.expand_dims(trellis[t - 1], 1) + transition_params trellis[t] = score[t] + numpy.max(v, 0) backpointers[t] = numpy.argmax(v, 0) viterbi = [numpy.argmax(trellis[-1])] for bp in reversed(backpointers[1:]): viterbi.append(bp[viterbi[-1]]) viterbi.reverse() viterbi_score = numpy.max(trellis[-1]) return viterbi, viterbi_score
Example 19
def adjust_prediction(self, probability, image): crf = dcrf.DenseCRF(np.prod(probability.shape), 2) # crf = dcrf.DenseCRF(np.prod(probability.shape), 1) binary_prob = np.stack((1 - probability, probability), axis=0) unary = unary_from_softmax(binary_prob) # unary = unary_from_softmax(np.expand_dims(probability, axis=0)) crf.setUnaryEnergy(unary) # per dimension scale factors sdims = [self.sdims] * 3 smooth = create_pairwise_gaussian(sdims=sdims, shape=probability.shape) crf.addPairwiseEnergy(smooth, compat=2) if self.schan: # per channel scale factors schan = [self.schan] * 6 appearance = create_pairwise_bilateral(sdims=sdims, schan=schan, img=image, chdim=3) crf.addPairwiseEnergy(appearance, compat=2) result = crf.inference(self.iter) crf_prediction = np.argmax(result, axis=0).reshape(probability.shape).astype(np.float32) return crf_prediction
Example 20
def preprocess_batch(self, captions_label_encoded): captions = keras_seq.pad_sequences(captions_label_encoded, padding='post') # Because the number of timesteps/words resulted by the model is # maxlen(captions) + 1 (because the first "word" is the image). captions_extended1 = keras_seq.pad_sequences(captions, maxlen=captions.shape[-1] + 1, padding='post') captions_one_hot = map(self._tokenizer.sequences_to_matrix, np.expand_dims(captions_extended1, -1)) captions_one_hot = np.array(captions_one_hot, dtype='int') # Decrease/shift word index by 1. # Shifting `captions_one_hot` makes the padding word # (index=0, encoded=[1, 0, ...]) encoded all zeros ([0, 0, ...]), # so its cross entropy loss will be zero. captions_decreased = captions.copy() captions_decreased[captions_decreased > 0] -= 1 captions_one_hot_shifted = captions_one_hot[:, :, 1:] captions_input = captions_decreased captions_output = captions_one_hot_shifted return captions_input, captions_output
Example 21
def to_pb_multibandtile(obj): """Converts an instance of ``Tile`` to ``ProtoMultibandTile``. Args: obj (:class:`~geopyspark.geotrellis.Tile`): An instance of ``Tile``. Returns: ProtoMultibandTile """ cells = obj.cells if cells.ndim == 2: cells = np.expand_dims(cells, 0) band_count = cells.shape[0] def create_tile(index): return Tile(cells[index, :, :], obj.cell_type, obj.no_data_value) multibandtile = ProtoMultibandTile() multibandtile.tiles.extend([to_pb_tile(create_tile(x)) for x in range(band_count)]) return multibandtile
Example 22
def getAction(self, action_space, state): # checkpoint = tf.train.get_checkpoint_state('saved_PiNetworks_' + self.player + '/') # if checkpoint and checkpoint.model_checkpoint_path: # self.saver.restore(self.session, checkpoint.model_checkpoint_path) # # print('model loaded') self.train_phase = False # state = np.zeros(33) state = np.expand_dims(state, -1) self.QValue = self.session.run(self.out, feed_dict={self.stateInput: [state], self.keep_probability: 1.0})[0] Q_test = self.QValue * action_space # print('Qtest ' + self.player) # print(Q_test) if max(Q_test) <= 0.0000001: action_index = random.randrange(self.ACTION_NUM) while action_space[action_index] != 1: action_index = random.randrange(self.ACTION_NUM) else: action_index = np.argmax(self.QValue * action_space) # if self.QValue[action_index] <= 0.0: # action_index = random.randrange(self.ACTION_NUM) # while action_space[action_index] != 1: # action_index = random.randrange(self.ACTION_NUM) return action_index
Example 23
def format_img(img, C): img_min_side = float(C.im_size) (height,width,_) = img.shape if width <= height: f = img_min_side/width new_height = int(f * height) new_width = int(img_min_side) else: f = img_min_side/height new_width = int(f * width) new_height = int(img_min_side) fx = width/float(new_width) fy = height/float(new_height) img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC) img = img[:, :, (2, 1, 0)] img = img.astype(np.float32) img[:, :, 0] -= C.img_channel_mean[0] img[:, :, 1] -= C.img_channel_mean[1] img[:, :, 2] -= C.img_channel_mean[2] img /= C.img_scaling_factor img = np.transpose(img, (2, 0, 1)) img = np.expand_dims(img, axis=0) return img, fx, fy
Example 24
def tensor_swirl(image, center=None, strength=1, radius=100, rotation=0, cval=0.0, **kwargs): # **kwargs is for unsupported options (ignored) cval = tf.fill(K.shape(image)[0:1], cval) shape = K.int_shape(image)[1:3] if center is None: center = np.array(shape) / 2 ys = np.expand_dims(np.repeat(np.arange(shape[0]), shape[1]),-1) xs = np.expand_dims(np.tile (np.arange(shape[1]), shape[0]),-1) map_xs, map_ys = swirl_mapping(xs, ys, center, rotation, strength, radius) mapping = np.zeros((*shape, *shape)) for map_x, map_y, x, y in zip(map_xs, map_ys, xs, ys): results = tensor_linear_interpolation(image, map_x, map_y, cval) for _y, _x, w in results: # mapping[int(y),int(x),int(_y),int(_x),] = w mapping[int(_y),int(_x),int(y),int(x),] = w results = tf.tensordot(image, K.variable(mapping), [[1,2],[0,1]]) # results = K.reshape(results, K.shape(image)) return results
Example 25
def imgread(img_path, scale = 4): img = scipy.misc.imread(img_path) img = img /256.0 h,w,c = img.shape tmp1 = h % scale new_h = h + scale - tmp1 tmp2 = w % scale new_w = w +scale-tmp2 img = np.pad(img, ((0,scale-tmp1), (0, scale-tmp2),(0,0)), mode = 'reflect') if scale != None: img = np.expand_dims(img,0) img = tf.convert_to_tensor(img) lr_w = new_w / scale lr_h = new_h /scale img = tf.cast(img, tf.float32) img_lr = tf.image.resize_images(img, [lr_h, lr_w]) img_lr = tf.cast(img_lr,tf.float32) return img_lr, img return img
Example 26
def imgread(img_path, scale = 4): img = scipy.misc.imread(img_path) #img = scipy.misc.imresize(img, (128, 128)) img = img /256.0 h,w,c = img.shape new_h = pow(2, int(math.log(h, 2))+1) tmp1 = new_h - h new_w = pow(2, int(math.log(w, 2))+1) tmp2 = new_w - w img = np.pad(img, ((0,tmp1), (0, tmp2),(0,0)), mode = 'constant') if scale != None: img = np.expand_dims(img,0) img = tf.convert_to_tensor(img) lr_w = new_w / scale lr_h = new_h /scale img = tf.cast(img, tf.float32) img_lr = tf.image.resize_images(img, [lr_h, lr_w]) img_lr = tf.cast(img_lr,tf.float32) return img_lr, img return img
Example 27
def preprocess_label(label): """ load label image, keep a single channel (all three should be the same) :param label: :return: """ # TODO: Populate with actual logic and move away from here into a dedicated class (like ImageDataGenerator) # target = 'pillow' if mode == 'pillow' else 'numpy' # # lbl = resize(lbl, target_h, target_w, mode=mode, target_type='numpy', keep_aspect_ratio=keep_aspect_ratio) # if mode == 'pillow': # # lbl = np.expand_dims(lbl[:, :, 0], axis=2) # assert np.all(lbl[:, :, 0] == lbl[:, :, 1]) and np.all(lbl[:, :, 0] == lbl[:, :, 2]) # lbl = lbl[:, :, 0].astype(np.uint8) # array2d = mapper[lbl] # onehot_lbl = to_categorical(array2d, num_classes=nc) # return onehot_lbl return label
Example 28
def run(self): model = self.model() dataset = self.dataset() for image_batch, target_batch in dataset.flow(): image_batch = image_batch['image'] target_batch = target_batch['output'] for image, target in zip(image_batch, target_batch): output = model.predict(np.expand_dims(image, axis=0))[0] output = np.reshape(np.argmax(output, axis=-1), newshape=(512, 512)) target = np.reshape(np.argmax(target, axis=-1), newshape=(512, 512)) plt.rcParams["figure.figsize"] = [4 * 3, 4] fig = plt.figure() subplot1 = fig.add_subplot(131) subplot1.imshow(image.astype(np.uint8)) subplot1.set_title('rgb image') subplot1.axis('off') subplot2 = fig.add_subplot(132) subplot2.imshow(output, cmap='gray') subplot2.set_title('Prediction') subplot2.axis('off') subplot3 = fig.add_subplot(133) masked = np.array(target) masked[target == 0] = 0 subplot3.imshow(masked, cmap='gray') subplot3.set_title('Targets') subplot3.axis('off') fig.tight_layout() plt.show()
Example 29
def dist_info_sym(self, obs_var, latent_var=None): # this is ment to be for one path! # now this is not doing anything! And for computing the dist_info_vars of npo_snn_rewardMI it doesn't work if latent_var is None: latent_var1 = theano.shared(np.expand_dims(self.latent_fix, axis=0)) # new fix to avoid putting the latent as an input: just take the one fixed! latent_var = TT.tile(latent_var1, [obs_var.shape[0], 1]) # generate the generalized input (append latents to obs.) if self.bilinear_integration: extended_obs_var = TT.concatenate([obs_var, latent_var, TT.flatten(obs_var[:, :, np.newaxis] * latent_var[:, np.newaxis, :], outdim=2)] , axis=1) else: extended_obs_var = TT.concatenate([obs_var, latent_var], axis=1) mean_var, log_std_var = L.get_output([self._l_mean, self._l_log_std], extended_obs_var) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(self.min_std)) return dict(mean=mean_var, log_std=log_std_var)
Example 30
def variable(value, dtype=_FLOATX, name=None): '''Instantiates a tensor. # Arguments value: numpy array, initial value of the tensor. dtype: tensor type. name: optional name string for the tensor. # Returns Tensor variable instance. ''' if hasattr(value, 'tocoo'): sparse_coo = value.tocoo() indices = np.concatenate((np.expand_dims(sparse_coo.row, 1), np.expand_dims(sparse_coo.col, 1)), 1) # SparseTensor doesn't need initialization v = tf.SparseTensor(indices=indices, values=sparse_coo.data, shape=sparse_coo.shape) v._dims = len(sparse_coo.shape) return v v = tf.Variable(value, dtype=_convert_string_dtype(dtype), name=name) return v
Example 31
def test_shape_operations(self): # concatenate xval = np.random.random((4, 3)) xth = KTH.variable(xval) xtf = KTF.variable(xval) yval = np.random.random((4, 2)) yth = KTH.variable(yval) ytf = KTF.variable(yval) zth = KTH.eval(KTH.concatenate([xth, yth], axis=-1)) ztf = KTF.eval(KTF.concatenate([xtf, ytf], axis=-1)) assert zth.shape == ztf.shape assert_allclose(zth, ztf, atol=1e-05) check_single_tensor_operation('reshape', (4, 2), shape=(8, 1)) check_single_tensor_operation('permute_dimensions', (4, 2, 3), pattern=(2, 0, 1)) check_single_tensor_operation('repeat', (4, 1), n=3) check_single_tensor_operation('flatten', (4, 1)) check_single_tensor_operation('expand_dims', (4, 3), dim=-1) check_single_tensor_operation('expand_dims', (4, 3, 2), dim=1) check_single_tensor_operation('squeeze', (4, 3, 1), axis=2) check_single_tensor_operation('squeeze', (4, 1, 1), axis=1) check_composed_tensor_operations('reshape', {'shape': (4, 3, 1, 1)}, 'squeeze', {'axis': 2}, (4, 3, 1, 1))
Example 32
def render(self, mode='human', close=False):#*args, **kwargs): env = self.conopt_env if close: if 'viewer' in env.__dict__: env.viewer.close() del env.viewer else: img = env.world.model.render(np.expand_dims(env.x, 0))[0] if mode == 'human': #import cv2 #img = cv2.resize(img, (50, 50)) if not 'viewer' in env.__dict__: from gym.envs.classic_control.rendering import SimpleImageViewer env.viewer = SimpleImageViewer() env.viewer.imshow(img) return img else: return img
Example 33
def readimg(img_path): img = misc.imread(img_path, mode='RGB') img = misc.imresize(img, (160, 160)) img = facenet.prewhiten(img) img = np.expand_dims(img, axis=0) return img
Example 34
def get_embedding(img_path): img = misc.imread(img_path, mode='RGB') # judge alignment aligned = align.align(160, img, [0, 0, img.shape[1], img.shape[0]], landmarkIndices=landmarkIndices) img = facenet.prewhiten(img) img = np.expand_dims(img, axis=0) aligned = facenet.prewhiten(aligned) aligned = np.expand_dims(aligned, axis=0) # Run forward pass to calculate embeddings feed_dict = {images_placeholder: img, phase_train_placeholder: False} emb = sess.run(embeddings, feed_dict=feed_dict) # Run forward pass to calculate embeddings feed_dict_aligned = {images_placeholder: aligned, phase_train_placeholder: False} emb_aligned = sess.run(embeddings, feed_dict=feed_dict_aligned) return emb.ravel(), emb_aligned.ravel() # # for test # import os # from time import time # def main(dir_path): # img_all = os.listdir(dir_path) # for f in img_all: # start = time() # embedding_result = get_embedding(os.path.join(dir_path, f)) # print time() - start # print embedding_result # # main('./data')
Example 35
def zscore(a, axis=0, ddof=0): a = np.asanyarray(a) mns = a.mean(axis=axis) sstd = a.std(axis=axis, ddof=ddof) if axis and mns.ndim < a.ndim: res = (((a - np.expand_dims(mns, axis=axis)) / np.expand_dims(sstd,axis=axis))) else: res = (a - mns) / sstd return np.nan_to_num(res)
Example 36
def is_catastrophe(self, obs): X = np.expand_dims(obs, axis=0) X = np.reshape(X, [X.shape[0], -1]) return self.classifier.predict(X)[0]
Example 37
def load_features_episode(self, episode): features = {} observations = [frame.observation for frame in episode.frames if frame.has_action()] features['observation'] = np.concatenate( [np.expand_dims(observation, axis=0) for observation in observations], axis=0) images = [frame.image for frame in episode.frames if frame.has_action()] features['image'] = np.concatenate( [process_image(image, self.hparams) for image in images], axis=0) actions = [frame.get_proposed_action() for frame in episode.frames if frame.has_action()] features['action'] = np.expand_dims(np.array(actions), axis=1) features['index'] = np.array( [i for i, frame in enumerate(episode.frames) if frame.has_action()]) return features
Example 38
def load_features_incident_records(self, incident_records): original_images = [] actions = [] for block_record_file in incident_records: with open(block_record_file, 'rb') as f: block_record = pickle.load(f) original_images.append(block_record.obs) actions.append(block_record.action) features = {} features['image'] = np.concatenate( [process_image(image, self.hparams) for image in original_images], axis=0) features['action'] = np.expand_dims(np.array(actions), axis=1) return features, original_images
Example 39
def process_image(image, hparams): desired_shape = hparams.image_shape if hparams.image_crop_region is not None: image = image[hparams.image_crop_region[0][0]:hparams.image_crop_region[0][1], hparams.image_crop_region[1][0]:hparams.image_crop_region[1][1]] if not tuple(image.shape) == tuple(desired_shape): image = cv2.resize(image, (desired_shape[1], desired_shape[0])) assert tuple(image.shape) == tuple(desired_shape), "{}, {}".format(image.shape, desired_shape) return np.expand_dims(image.astype(np.float32) / 256.0, axis=0)
Example 40
def label(self, features, episode): labels = np.array( [self._has_label(frame) for frame in episode.frames if frame.has_action()]) actions = [ frame.get_action(self.action_type) for frame in episode.frames if frame.has_action() ] features['action'] = np.expand_dims(np.array(actions), axis=1) return features, labels
Example 41
def load_features_episode(self, episode): features = {} observations = [frame.observation for frame in episode.frames if frame.has_action()] features['observation'] = np.concatenate( [np.expand_dims(observation, axis=0) for observation in observations], axis=0) images = [frame.image for frame in episode.frames if frame.has_action()] features['image'] = np.concatenate( [process_image(image, self.hparams) for image in images], axis=0) actions = [frame.get_proposed_action() for frame in episode.frames if frame.has_action()] features['action'] = np.expand_dims(np.array(actions), axis=1) features['index'] = np.array( [i for i, frame in enumerate(episode.frames) if frame.has_action()]) return features
Example 42
def load_features_incident_records(self, incident_records): original_images = [] actions = [] for block_record_file in incident_records: with open(block_record_file, 'rb') as f: block_record = pickle.load(f) original_images.append(block_record.obs) actions.append(block_record.action) features = {} features['image'] = np.concatenate( [process_image(image, self.hparams) for image in original_images], axis=0) features['action'] = np.expand_dims(np.array(actions), axis=1) return features, original_images
Example 43
def process_image(image, hparams): desired_shape = hparams.image_shape if hparams.image_crop_region is not None: image = image[hparams.image_crop_region[0][0]:hparams.image_crop_region[0][1], hparams.image_crop_region[1][0]:hparams.image_crop_region[1][1]] if not tuple(image.shape) == tuple(desired_shape): image = cv2.resize(image, (desired_shape[1], desired_shape[0])) assert tuple(image.shape) == tuple(desired_shape), "{}, {}".format(image.shape, desired_shape) return np.expand_dims(image.astype(np.float32) / 256.0, axis=0)
Example 44
def label(self, features, episode): labels = np.array( [self._has_label(frame) for frame in episode.frames if frame.has_action()]) actions = [ frame.get_action(self.action_type) for frame in episode.frames if frame.has_action() ] features['action'] = np.expand_dims(np.array(actions), axis=1) return features, labels
Example 45
def is_catastrophe(self, obs): X = np.expand_dims(obs, axis=0) X = np.reshape(X, [X.shape[0], -1]) return self.classifier.predict(X)[0]
Example 46
def load_features_incident_records(self, incident_records): original_images = [] actions = [] for block_record_file in incident_records: with open(block_record_file, 'rb') as f: block_record = pickle.load(f) original_images.append(block_record.obs) actions.append(block_record.action) features = {} features['image'] = np.concatenate( [process_image(image, self.hparams) for image in original_images], axis=0) features['action'] = np.expand_dims(np.array(actions), axis=1) return features, original_images
Example 47
def process_image(image, hparams): desired_shape = hparams.image_shape if hparams.image_crop_region is not None: image = image[hparams.image_crop_region[0][0]:hparams.image_crop_region[0][1], hparams.image_crop_region[1][0]:hparams.image_crop_region[1][1]] if not tuple(image.shape) == tuple(desired_shape): image = cv2.resize(image, (desired_shape[1], desired_shape[0])) assert tuple(image.shape) == tuple(desired_shape), "{}, {}".format(image.shape, desired_shape) return np.expand_dims(image.astype(np.float32) / 256.0, axis=0)
Example 48
def label(self, features, episode): labels = np.array( [self._has_label(frame) for frame in episode.frames if frame.has_action()]) actions = [ frame.get_action(self.action_type) for frame in episode.frames if frame.has_action() ] features['action'] = np.expand_dims(np.array(actions), axis=1) return features, labels
Example 49
def is_catastrophe(self, obs): X = np.expand_dims(obs, axis=0) X = np.reshape(X, [X.shape[0], -1]) return self.classifier.predict(X)[0]
Example 50
def load_features_episode(self, episode): features = {} observations = [frame.observation for frame in episode.frames if frame.has_action()] features['observation'] = np.concatenate( [np.expand_dims(observation, axis=0) for observation in observations], axis=0) images = [frame.image for frame in episode.frames if frame.has_action()] features['image'] = np.concatenate( [process_image(image, self.hparams) for image in images], axis=0) actions = [frame.get_proposed_action() for frame in episode.frames if frame.has_action()] features['action'] = np.expand_dims(np.array(actions), axis=1) features['index'] = np.array( [i for i, frame in enumerate(episode.frames) if frame.has_action()]) return features