The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def update(self,frame,events): falloff = self.falloff img = frame.img pts = [denormalize(pt['norm_pos'],frame.img.shape[:-1][::-1],flip_y=True) for pt in events.get('gaze_positions',[]) if pt['confidence']>=self.g_pool.min_data_confidence] overlay = np.ones(img.shape[:-1],dtype=img.dtype) # draw recent gaze postions as black dots on an overlay image. for gaze_point in pts: try: overlay[int(gaze_point[1]),int(gaze_point[0])] = 0 except: pass out = cv2.distanceTransform(overlay,cv2.DIST_L2, 5) # fix for opencv binding inconsitency if type(out)==tuple: out = out[0] overlay = 1/(out/falloff+1) img[:] = np.multiply(img, cv2.cvtColor(overlay,cv2.COLOR_GRAY2RGB), casting="unsafe")
Example 2
def svgd_kernel(self, h = -1): sq_dist = pdist(self.theta) pairwise_dists = squareform(sq_dist)**2 if h < 0: # if h < 0, using median trick h = np.median(pairwise_dists) h = np.sqrt(0.5 * h / np.log(self.theta.shape[0]+1)) # compute the rbf kernel Kxy = np.exp( -pairwise_dists / h**2 / 2) dxkxy = -np.matmul(Kxy, self.theta) sumkxy = np.sum(Kxy, axis=1) for i in range(self.theta.shape[1]): dxkxy[:, i] = dxkxy[:,i] + np.multiply(self.theta[:,i],sumkxy) dxkxy = dxkxy / (h**2) return (Kxy, dxkxy)
Example 3
def EStep(self): P = np.zeros((self.M, self.N)) for i in range(0, self.M): diff = self.X - np.tile(self.TY[i, :], (self.N, 1)) diff = np.multiply(diff, diff) P[i, :] = P[i, :] + np.sum(diff, axis=1) c = (2 * np.pi * self.sigma2) ** (self.D / 2) c = c * self.w / (1 - self.w) c = c * self.M / self.N P = np.exp(-P / (2 * self.sigma2)) den = np.sum(P, axis=0) den = np.tile(den, (self.M, 1)) den[den==0] = np.finfo(float).eps self.P = np.divide(P, den) self.Pt1 = np.sum(self.P, axis=0) self.P1 = np.sum(self.P, axis=1) self.Np = np.sum(self.P1)
Example 4
def derivative(self, input=None): """The derivative of sigmoid is .. math:: \\frac{dy}{dx} & = (1-\\varphi(x)) \\otimes \\varphi(x) \\\\ & = \\frac{e^{-x}}{(1+e^{-x})^2} \\\\ & = \\frac{e^x}{(1+e^x)^2} Returns ------- float32 The derivative of sigmoid function. """ last_forward = self.forward(input) if input else self.last_forward return np.multiply(last_forward, 1 - last_forward) # sigmoid-end # tanh-start
Example 5
def svgd_kernel(self, theta, h = -1): sq_dist = pdist(theta) pairwise_dists = squareform(sq_dist)**2 if h < 0: # if h < 0, using median trick h = np.median(pairwise_dists) h = np.sqrt(0.5 * h / np.log(theta.shape[0]+1)) # compute the rbf kernel Kxy = np.exp( -pairwise_dists / h**2 / 2) dxkxy = -np.matmul(Kxy, theta) sumkxy = np.sum(Kxy, axis=1) for i in range(theta.shape[1]): dxkxy[:, i] = dxkxy[:,i] + np.multiply(theta[:,i],sumkxy) dxkxy = dxkxy / (h**2) return (Kxy, dxkxy)
Example 6
def gradientDescent(X, y, theta, alpha, iters): temp = np.matrix(np.zeros(theta.shape)) params = int(theta.ravel().shape[1]) #flattens cost = np.zeros(iters) for i in range(iters): err = (X * theta.T) - y for j in range(params): term = np.multiply(err, X[:,j]) temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term)) theta = temp cost[i] = computeCost(X, y, theta) return theta, cost
Example 7
def computeCost(X, y, theta): inner = np.power(((X * theta.T) - y), 2) return np.sum(inner) / (2 * len(X)) #def gradientDescent(X, y, theta, alpha, iters): # temp = np.matrix(np.zeros(theta.shape)) # params = int(theta.ravel().shape[1]) #flattens # cost = np.zeros(iters) # # for i in range(iters): # err = (X * theta.T) - y # # for j in range(params): # term = np.multiply(err, X[:,j]) # temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term)) # # theta = temp # cost[i] = computeCost(X, y, theta) # # return theta, cost
Example 8
def _extract_images(filename): """??????????????????? :param filename: ????? :return: 4??numpy??[index, y, x, depth]? ???np.float32 """ images = [] print('Extracting {}'.format(filename)) with gzip.GzipFile(fileobj=open(filename, 'rb')) as f: buf = f.read() index = 0 magic, num_images, rows, cols = struct.unpack_from('>IIII', buf, index) if magic != 2051: raise ValueError('Invalid magic number {} in MNIST image file: {}'.format(magic, filename)) index += struct.calcsize('>IIII') for i in range(num_images): img = struct.unpack_from('>784B', buf, index) index += struct.calcsize('>784B') img = np.array(img, dtype=np.float32) # ????[0,255]???[0,1] img = np.multiply(img, 1.0 / 255.0) img = img.reshape(rows, cols, 1) images.append(img) return np.array(images, dtype=np.float32)
Example 9
def get_max_q_values( self, next_states: np.ndarray, possible_next_actions: Optional[np.ndarray] = None, use_target_network: Optional[bool] = True ) -> np.ndarray: q_values = self.get_q_values_all_actions( next_states, use_target_network ) if possible_next_actions is not None: mask = np.multiply( np.logical_not(possible_next_actions), self.ACTION_NOT_POSSIBLE_VAL ) q_values += mask return np.max(q_values, axis=1, keepdims=True)
Example 10
def gen_training_data( num_features, num_training_samples, num_outputs, noise_scale=0.1, ): np.random.seed(0) random.seed(1) input_distribution = stats.norm() training_inputs = input_distribution.rvs( size=(num_training_samples, num_features) ).astype(np.float32) weights = np.random.normal(size=(num_outputs, num_features) ).astype(np.float32).transpose() noise = np.multiply( np.random.normal(size=(num_training_samples, num_outputs)), noise_scale ) training_outputs = (np.dot(training_inputs, weights) + noise).astype(np.float32) return training_inputs, training_outputs, weights, input_distribution
Example 11
def make_tfidf(arr): '''input, numpy array with flavor counts for each recipe and compounds return numpy array adjusted as tfidf ''' arr2 = arr.copy() N=arr2.shape[0] l2_rows = np.sqrt(np.sum(arr2**2, axis=1)).reshape(N, 1) l2_rows[l2_rows==0]=1 arr2_norm = arr2/l2_rows arr2_freq = np.sum(arr2_norm>0, axis=0) arr2_idf = np.log(float(N+1) / (1.0 + arr2_freq)) + 1.0 from sklearn.preprocessing import normalize tfidf = np.multiply(arr2_norm, arr2_idf) tfidf = normalize(tfidf, norm='l2', axis=1) print tfidf.shape return tfidf
Example 12
def make_tfidf(arr): '''input, numpy array with flavor counts for each recipe and compounds return numpy array adjusted as tfidf ''' arr2 = arr.copy() N=arr2.shape[0] l2_rows = np.sqrt(np.sum(arr2**2, axis=1)).reshape(N, 1) l2_rows[l2_rows==0]=1 arr2_norm = arr2/l2_rows arr2_freq = np.sum(arr2_norm>0, axis=0) arr2_idf = np.log(float(N+1) / (1.0 + arr2_freq)) + 1.0 from sklearn.preprocessing import normalize tfidf = np.multiply(arr2_norm, arr2_idf) tfidf = normalize(tfidf, norm='l2', axis=1) print tfidf.shape return tfidf
Example 13
def train(self, training_data_array): for data in training_data_array: # ?????????? y1 = np.dot(np.mat(self.theta1), np.mat(data.y0).T) sum1 = y1 + np.mat(self.input_layer_bias) y1 = self.sigmoid(sum1) y2 = np.dot(np.array(self.theta2), y1) y2 = np.add(y2, self.hidden_layer_bias) y2 = self.sigmoid(y2) # ?????????? actual_vals = [0] * 10 actual_vals[data.label] = 1 output_errors = np.mat(actual_vals).T - np.mat(y2) hidden_errors = np.multiply(np.dot(np.mat(self.theta2).T, output_errors), self.sigmoid_prime(sum1)) # ??????????? self.theta1 += self.LEARNING_RATE * np.dot(np.mat(hidden_errors), np.mat(data.y0)) self.theta2 += self.LEARNING_RATE * np.dot(np.mat(output_errors), np.mat(y1).T) self.hidden_layer_bias += self.LEARNING_RATE * output_errors self.input_layer_bias += self.LEARNING_RATE * hidden_errors
Example 14
def ct2lg(dX, dY, dZ, lat, lon): n = dX.size R = np.zeros((3, 3, n)) R[0, 0, :] = -np.multiply(np.sin(np.deg2rad(lat)), np.cos(np.deg2rad(lon))) R[0, 1, :] = -np.multiply(np.sin(np.deg2rad(lat)), np.sin(np.deg2rad(lon))) R[0, 2, :] = np.cos(np.deg2rad(lat)) R[1, 0, :] = -np.sin(np.deg2rad(lon)) R[1, 1, :] = np.cos(np.deg2rad(lon)) R[1, 2, :] = np.zeros((1, n)) R[2, 0, :] = np.multiply(np.cos(np.deg2rad(lat)), np.cos(np.deg2rad(lon))) R[2, 1, :] = np.multiply(np.cos(np.deg2rad(lat)), np.sin(np.deg2rad(lon))) R[2, 2, :] = np.sin(np.deg2rad(lat)) dxdydz = np.column_stack((np.column_stack((dX, dY)), dZ)) RR = np.reshape(R[0, :, :], (3, n)) dx = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0) RR = np.reshape(R[1, :, :], (3, n)) dy = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0) RR = np.reshape(R[2, :, :], (3, n)) dz = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0) return dx, dy, dz
Example 15
def ct2lg(self, dX, dY, dZ, lat, lon): n = dX.size R = numpy.zeros((3, 3, n)) R[0, 0, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon))) R[0, 1, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon))) R[0, 2, :] = numpy.cos(numpy.deg2rad(lat)) R[1, 0, :] = -numpy.sin(numpy.deg2rad(lon)) R[1, 1, :] = numpy.cos(numpy.deg2rad(lon)) R[1, 2, :] = numpy.zeros((1, n)) R[2, 0, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon))) R[2, 1, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon))) R[2, 2, :] = numpy.sin(numpy.deg2rad(lat)) dxdydz = numpy.column_stack((numpy.column_stack((dX, dY)), dZ)) RR = numpy.reshape(R[0, :, :], (3, n)) dx = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0) RR = numpy.reshape(R[1, :, :], (3, n)) dy = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0) RR = numpy.reshape(R[2, :, :], (3, n)) dz = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0) return dx, dy, dz
Example 16
def ct2lg(dX, dY, dZ, lat, lon): n = dX.size R = np.zeros((3, 3, n)) R[0, 0, :] = -np.multiply(np.sin(np.deg2rad(lat)), np.cos(np.deg2rad(lon))) R[0, 1, :] = -np.multiply(np.sin(np.deg2rad(lat)), np.sin(np.deg2rad(lon))) R[0, 2, :] = np.cos(np.deg2rad(lat)) R[1, 0, :] = -np.sin(np.deg2rad(lon)) R[1, 1, :] = np.cos(np.deg2rad(lon)) R[1, 2, :] = np.zeros((1, n)) R[2, 0, :] = np.multiply(np.cos(np.deg2rad(lat)), np.cos(np.deg2rad(lon))) R[2, 1, :] = np.multiply(np.cos(np.deg2rad(lat)), np.sin(np.deg2rad(lon))) R[2, 2, :] = np.sin(np.deg2rad(lat)) dxdydz = np.column_stack((np.column_stack((dX, dY)), dZ)) RR = np.reshape(R[0, :, :], (3, n)) dx = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0) RR = np.reshape(R[1, :, :], (3, n)) dy = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0) RR = np.reshape(R[2, :, :], (3, n)) dz = np.sum(np.multiply(RR, dxdydz.transpose()), axis=0) return dx, dy, dz
Example 17
def ct2lg(self, dX, dY, dZ, lat, lon): n = dX.size R = numpy.zeros((3, 3, n)) R[0, 0, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon))) R[0, 1, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon))) R[0, 2, :] = numpy.cos(numpy.deg2rad(lat)) R[1, 0, :] = -numpy.sin(numpy.deg2rad(lon)) R[1, 1, :] = numpy.cos(numpy.deg2rad(lon)) R[1, 2, :] = numpy.zeros((1, n)) R[2, 0, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon))) R[2, 1, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon))) R[2, 2, :] = numpy.sin(numpy.deg2rad(lat)) dxdydz = numpy.column_stack((numpy.column_stack((dX, dY)), dZ)) RR = numpy.reshape(R[0, :, :], (3, n)) dx = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0) RR = numpy.reshape(R[1, :, :], (3, n)) dy = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0) RR = numpy.reshape(R[2, :, :], (3, n)) dz = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0) return dx, dy, dz
Example 18
def ct2lg(self, dX, dY, dZ, lat, lon): n = dX.size R = numpy.zeros((3, 3, n)) R[0, 0, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon))) R[0, 1, :] = -numpy.multiply(numpy.sin(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon))) R[0, 2, :] = numpy.cos(numpy.deg2rad(lat)) R[1, 0, :] = -numpy.sin(numpy.deg2rad(lon)) R[1, 1, :] = numpy.cos(numpy.deg2rad(lon)) R[1, 2, :] = numpy.zeros((1, n)) R[2, 0, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.cos(numpy.deg2rad(lon))) R[2, 1, :] = numpy.multiply(numpy.cos(numpy.deg2rad(lat)), numpy.sin(numpy.deg2rad(lon))) R[2, 2, :] = numpy.sin(numpy.deg2rad(lat)) dxdydz = numpy.column_stack((numpy.column_stack((dX, dY)), dZ)) RR = numpy.reshape(R[0, :, :], (3, n)) dx = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0) RR = numpy.reshape(R[1, :, :], (3, n)) dy = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0) RR = numpy.reshape(R[2, :, :], (3, n)) dz = numpy.sum(numpy.multiply(RR, dxdydz.transpose()), axis=0) return dx, dy, dz
Example 19
def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0
Example 20
def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0
Example 21
def phaseSensitive(self): """ Computation of Phase Sensitive Mask. As appears in : H Erdogan, John R. Hershey, Shinji Watanabe, and Jonathan Le Roux, "Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks," in ICASSP 2015, Brisbane, April, 2015. Args: mTarget: (2D ndarray) Magnitude Spectrogram of the target component pTarget: (2D ndarray) Phase Spectrogram of the output component mY: (2D ndarray) Magnitude Spectrogram of the residual component pY: (2D ndarray) Phase Spectrogram of the residual component Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Phase Sensitive Masking.') # Compute Phase Difference Theta = (self._pTarget - self._pY) self._mask = 2./ (1. + np.exp(-np.multiply(np.divide(self._sTarget, self._eps + self._nResidual), np.cos(Theta)))) - 1.
Example 22
def __init__(self, images, labels, dtype=dtypes.float32, reshape=True): dtype = dtypes.as_dtype(dtype).base_dtype if dtype not in (dtypes.uint8, dtypes.float32): raise TypeError('Invalid image dtype %r, expected uint8 or float32' %dtype) self._num_examples = images.shape[0] if dtype == dtypes.float32: # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(np.float32) images = np.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0
Example 23
def test_wrap_with_iterable(self): # test fix for bug #1026: class with_wrap(np.ndarray): __array_priority__ = 10 def __new__(cls): return np.asarray(1).view(cls).copy() def __array_wrap__(self, arr, context): return arr.view(type(self)) a = with_wrap() x = ncu.multiply(a, (1, 2, 3)) self.assertTrue(isinstance(x, with_wrap)) assert_array_equal(x, np.array((1, 2, 3)))
Example 24
def test_out_override(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return # regression test for github bug 4753 class OutClass(np.ndarray): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): if 'out' in kw: tmp_kw = kw.copy() tmp_kw.pop('out') func = getattr(ufunc, method) kw['out'][...] = func(*inputs, **tmp_kw) A = np.array([0]).view(OutClass) B = np.array([5]) C = np.array([6]) np.multiply(C, B, A) assert_equal(A[0], 30) assert_(isinstance(A, OutClass)) A[0] = 0 np.multiply(C, B, out=A) assert_equal(A[0], 30) assert_(isinstance(A, OutClass))
Example 25
def predictions_for_tiles(test_images, model): """Batch predictions on the test image set, to avoid a memory spike.""" npy_test_images = numpy.array([img_loc_tuple[0] for img_loc_tuple in test_images]) test_images = npy_test_images.astype(numpy.float32) test_images = numpy.multiply(test_images, 1.0 / 255.0) all_predictions = [] for x in range(0, len(test_images) - 100, 100): for p in model.predict(test_images[x:x + 100]): all_predictions.append(p) for p in model.predict(test_images[len(all_predictions):]): all_predictions.append(p) assert len(all_predictions) == len(test_images) return all_predictions
Example 26
def knn_masked_data(trX,trY,missing_data_dir, input_shape, k): raw_im_data = np.loadtxt(join(script_dir,missing_data_dir,'index.txt'),delimiter=' ',dtype=str) raw_mask_data = np.loadtxt(join(script_dir,missing_data_dir,'index_mask.txt'),delimiter=' ',dtype=str) # Using 'brute' method since we only want to do one query per classifier # so this will be quicker as it avoids overhead of creating a search tree knn_m = KNeighborsClassifier(algorithm='brute',n_neighbors=k) prob_Y_hat = np.zeros((raw_im_data.shape[0],int(np.max(trY)+1))) total_images = raw_im_data.shape[0] pbar = progressbar.ProgressBar(widgets=[progressbar.FormatLabel('\rProcessed %(value)d of %(max)d Images '), progressbar.Bar()], maxval=total_images, term_width=50).start() for i in range(total_images): mask_im=load_image(join(script_dir,missing_data_dir,raw_mask_data[i][0]), input_shape,1).reshape(np.prod(input_shape)) mask = np.logical_not(mask_im > eps) # since mask is 1 at missing locations v_im=load_image(join(script_dir,missing_data_dir,raw_im_data[i][0]), input_shape, 255).reshape(np.prod(input_shape)) rep_mask = np.tile(mask,(trX.shape[0],1)) # Corrupt whole training set according to the current mask corr_trX = np.multiply(trX, rep_mask) knn_m.fit(corr_trX, trY) prob_Y_hat[i,:] = knn_m.predict_proba(v_im.reshape(1,-1)) pbar.update(i) pbar.finish() return prob_Y_hat
Example 27
def cochleagram_extractor(xx, sr, win_len, shift_len, channel_number, win_type): fcoefs, f = make_erb_filters(sr, channel_number, 50) fcoefs = np.flipud(fcoefs) xf = erb_frilter_bank(xx, fcoefs) if win_type == 'hanning': window = np.hanning(channel_number) elif win_type == 'hamming': window = np.hamming(channel_number) elif win_type == 'triangle': window = (1 - (np.abs(channel_number - 1 - 2 * np.arange(1, channel_number + 1, 1)) / (channel_number + 1))) else: window = np.ones(channel_number) window = window.reshape((channel_number, 1)) xe = np.power(xf, 2.0) frames = 1 + ((np.size(xe, 1)-win_len) // shift_len) cochleagram = np.zeros((channel_number, frames)) for i in range(frames): one_frame = np.multiply(xe[:, i*shift_len:i*shift_len+win_len], np.repeat(window, win_len, 1)) cochleagram[:, i] = np.sqrt(np.mean(one_frame, 1)) cochleagram = np.where(cochleagram == 0.0, np.finfo(float).eps, cochleagram) return cochleagram
Example 28
def log_power_spectrum_extractor(x, win_len, shift_len, win_type, is_log=False): samples = x.shape[0] frames = (samples - win_len) // shift_len stft = np.zeros((win_len, frames), dtype=np.complex64) spect = np.zeros((win_len // 2 + 1, frames), dtype=np.float64) if win_type == 'hanning': window = np.hanning(win_len) elif win_type == 'hamming': window = np.hamming(win_len) elif win_type == 'rectangle': window = np.ones(win_len) for i in range(frames): one_frame = x[i*shift_len: i*shift_len+win_len] windowed_frame = np.multiply(one_frame, window) stft[:, i] = np.fft.fft(windowed_frame, win_len) if is_log: spect[:, i] = np.log(np.power(np.abs(stft[0: win_len//2+1, i]), 2.)) else: spect[:, i] = np.power(np.abs(stft[0: win_len//2+1, i]), 2.) return spect
Example 29
def stft_extractor(x, win_len, shift_len, win_type): samples = x.shape[0] frames = (samples - win_len) // shift_len stft = np.zeros((win_len, frames), dtype=np.complex64) spect = np.zeros((win_len // 2 + 1, frames), dtype=np.complex64) if win_type == 'hanning': window = np.hanning(win_len) elif win_type == 'hamming': window = np.hamming(win_len) elif win_type == 'rectangle': window = np.ones(win_len) for i in range(frames): one_frame = x[i*shift_len: i*shift_len+win_len] windowed_frame = np.multiply(one_frame, window) stft[:, i] = np.fft.fft(windowed_frame, win_len) spect[:, i] = stft[: win_len//2+1, i] return spect
Example 30
def spectrum_extractor(x, win_len, shift_len, win_type, is_log): samples = x.shape[0] frames = (samples - win_len) // shift_len stft = np.zeros((win_len, frames), dtype=np.complex64) spectrum = np.zeros((win_len // 2 + 1, frames), dtype=np.float64) if win_type == 'hanning': window = np.hanning(win_len) elif win_type == 'hamming': window = np.hamming(win_len) elif win_type == 'triangle': window = (1 - (np.abs(win_len - 1 - 2 * np.arange(1, win_len + 1, 1)) / (win_len + 1))) else: window = np.ones(win_len) for i in range(frames): one_frame = x[i*shift_len: i*shift_len+win_len] windowed_frame = np.multiply(one_frame, window) stft[:, i] = np.fft.fft(windowed_frame, win_len) if is_log: spectrum[:, i] = np.log(np.abs(stft[0: win_len//2+1, i])) else: spectrum[:, i] = np.abs(stft[0: win_len // 2 + 1:, i]) return spectrum
Example 31
def get_volume_of_dose(self, dose, **kwargs): volumes = np.zeros(self.count) for x in range(0, self.count): dvh = np.zeros(len(self.dvh)) for y in range(0, len(self.dvh)): dvh[y] = self.dvh[y][x] if 'input' in kwargs and kwargs['input'] == 'relative': if isinstance(self.rx_dose[x], basestring): volumes[x] = 0 else: volumes[x] = volume_of_dose(dvh, dose * self.rx_dose[x]) else: volumes[x] = volume_of_dose(dvh, dose) if 'output' in kwargs and kwargs['output'] == 'absolute': volumes = np.multiply(volumes, self.volume[0:self.count]) else: volumes = np.multiply(volumes, 100.) return volumes.tolist()
Example 32
def phaseSensitive(self): """ Computation of Phase Sensitive Mask. As appears in : H Erdogan, John R. Hershey, Shinji Watanabe, and Jonathan Le Roux, "Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks," in ICASSP 2015, Brisbane, April, 2015. Args: mTarget: (2D ndarray) Magnitude Spectrogram of the target component pTarget: (2D ndarray) Phase Spectrogram of the output component mY: (2D ndarray) Magnitude Spectrogram of the output component pY: (2D ndarray) Phase Spectrogram of the output component Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Phase Sensitive Masking.') # Compute Phase Difference Theta = (self._pTarget - self._pY) self._mask = 2./ (1. + np.exp(-np.multiply(np.divide(self._sTarget, self._eps + self._nResidual), np.cos(Theta)))) - 1.
Example 33
def next_frame(self, pixels, t, collaboration_state, osc_data): # render every 2 frames so the ripples are slower self.frameCount += 1 if (self.frameCount % 2 == 0): pixels[:, :] = self.get_pixels() return # only generate a ripple every couple frames if (random.random() < 0.12): self.start_ripple() # calculate a pixel values based on it's neighbors self.ripple_state[1:-1, 1:-1] = ( self.previous_ripple_state[:-2, 1:-1] + self.previous_ripple_state[2:, 1:-1] + self.previous_ripple_state[1:-1, :-2] + self.previous_ripple_state[1:-1, 2:] ) * 0.5 - self.ripple_state[1:-1, 1:-1] # damping # numpy doesn't like multiplying ints and floats so tell it to be unsafe np.multiply(self.ripple_state, self.damping, out=self.ripple_state, casting='unsafe') pixels[:, :] = self.get_pixels() self.swap_buffers()
Example 34
def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0
Example 35
def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0
Example 36
def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0
Example 37
def imresizemex(inimg, weights, indices, dim): in_shape = inimg.shape w_shape = weights.shape out_shape = list(in_shape) out_shape[dim] = w_shape[0] outimg = np.zeros(out_shape) if dim == 0: for i_img in range(in_shape[1]): for i_w in range(w_shape[0]): w = weights[i_w, :] ind = indices[i_w, :] im_slice = inimg[ind, i_img].astype(np.float64) outimg[i_w, i_img] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0) elif dim == 1: for i_img in range(in_shape[0]): for i_w in range(w_shape[0]): w = weights[i_w, :] ind = indices[i_w, :] im_slice = inimg[i_img, ind].astype(np.float64) outimg[i_img, i_w] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0) if inimg.dtype == np.uint8: outimg = np.clip(outimg, 0, 255) return np.around(outimg).astype(np.uint8) else: return outimg
Example 38
def test_cputensor_multiply_constant(): """TODO.""" M = ng.make_axis(length=1) N = ng.make_axis(length=3) np_a = np.array([[1, 2, 3]], dtype=np.float32) np_c = np.multiply(np_a, 2) a = ng.constant(np_a, [M, N]) b = ng.constant(2) c = ng.multiply(a, b) with executor(c) as ex: result = ex() print(result) assert np.array_equal(result, np_c)
Example 39
def test_cputensor_fusion(): """TODO.""" M = ng.make_axis(length=1) N = ng.make_axis(length=3) np_a = np.array([[1, 2, 3]], dtype=np.float32) np_b = np.array([[3, 2, 1]], dtype=np.float32) np_d = np.multiply(np_b, np.add(np_a, 2)) a = ng.constant(np_a, [M, N]) b = ng.constant(np_b, [M, N]) c = ng.constant(2) d = ng.multiply(b, ng.add(a, c)) with executor(d) as ex: result = ex() print(result) assert np.array_equal(result, np_d)
Example 40
def discrete_uniform(self, low, high, quantum, axes, dtype=None): """ Returns a tensor initialized with a discrete uniform distribution. Arguments: low: The lower limit of the values. high: The upper limit of the values. quantum: Distance between values. axes: The axes of the tensor. Returns: The tensor. """ if dtype is None: dtype = self.dtype n = math.floor((high - low) / quantum) result = np.array(self.rng.random_integers( 0, n, ng.make_axes(axes).lengths), dtype=dtype) np.multiply(result, quantum, result) np.add(result, low, result) return result
Example 41
def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0
Example 42
def train(self): eps = 1e-10 for i in range(self.epo): if i % 1 == 0: self.show_error() A = np.asarray(self.A.copy()) Z = np.asarray(self.Z.copy()) start = time.time() Z1 = np.multiply(Z, np.asarray(self.A.transpose() * self.Y)) Z = np.divide(Z1, eps + np.asarray(self.A.transpose() * self.A * self.Z)) # + eps to avoid divided by 0 self.Z = np.asmatrix(Z) A1 = np.multiply(A, np.asarray( self.Y * self.Z.transpose())) A = np.divide(A1, eps + np.asarray( self.A * self.Z * self.Z.transpose())) end = time.time() self.A = np.asmatrix(A) self.time = self.time + end - start
Example 43
def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0
Example 44
def plot_defect_classifications(bmp, list_of_classified_defects, unclassified_defect_region, td_classify, defect_free_region): plt.rcParams['figure.figsize'] = (10.0, 10.0); plt.set_cmap('gray'); fig = plt.figure(); ax = fig.add_subplot(111); fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None, hspace=None); # Plot the labeled defect regions on top of the temperature field bmp[defect_free_region==1.] = 0.5*bmp[defect_free_region==1.] # Defect-free region txt_out = [] for defect in list_of_classified_defects: defect_center = centroid(defect['defect_region']) outline = defect['defect_region'] ^ morphology.binary_dilation(defect['defect_region'],morphology.disk(2)) bmp[outline==1] = 255 txt = ax.annotate(DEFECT_TYPES[defect['defect_type']],(defect_center[0]-5,defect_center[1]), color='white', fontweight='bold', fontsize=10); txt.set_path_effects([PathEffects.withStroke(linewidth=2, foreground='k')]); txt_out.append(txt) unknown_td = np.multiply(unclassified_defect_region, (td_classify != 0).astype(np.int)) bmp[morphology.binary_dilation(unknown_td,morphology.disk(2))==1] = 0 bmp[morphology.binary_dilation(unknown_td,morphology.disk(1))==1] = 255 frame = ax.imshow(bmp); ax.axis('off'); return fig, ax, frame, txt_out
Example 45
def mult(self, target, deps, geo_mean_flag, tfo): #SUPPORT NONE TARGET target_vec = self.word_vecs.represent(target) scores = self.word_vecs.pos_scores(target_vec) for dep in deps: if dep in self.context_vecs: dep_vec = self.context_vecs.represent(dep) mult_scores = self.word_vecs.pos_scores(dep_vec) if geo_mean_flag: mult_scores = mult_scores**(1.0/len(deps)) scores = np.multiply(scores, mult_scores) else: tfo.write("NOTICE: %s not in context embeddings. Ignoring.\n" % dep) result_vec = self.word_vecs.top_scores(scores, -1) return result_vec
Example 46
def getTopWeightedFeatures(experiment_id, inst_exp_id, instance_id, size): instance_id = int(instance_id) exp = ExperimentFactory.getFactory().fromJson(experiment_id, session) validation_experiment = ExperimentFactory.getFactory().fromJson(inst_exp_id, session) #get the features features_names, features_values = validation_experiment.getFeatures(instance_id) features_values = [float(value) for value in features_values] #get the pipeline with scaler and logistic model pipeline = exp.getModelPipeline() #scale the features scaled_values = pipeline.named_steps['scaler'].transform(np.reshape(features_values,(1, -1))) weighted_values = np.multiply(scaled_values, pipeline.named_steps['model'].coef_) features = map(lambda name, value, w_value: (name, value, w_value), features_names, features_values, weighted_values[0]) features.sort(key = lambda tup: abs(tup[2])) features = features[:-int(size)-1:-1] tooltips = [x[1] for x in features] barplot = BarPlot([x[0] for x in features]) dataset = PlotDataset([x[2] for x in features], None) dataset.setColor(colors_tools.red) barplot.addDataset(dataset) return jsonify(barplot.toJson(tooltip_data = tooltips))
Example 47
def __init__(self, images, labels, fake_data=False): """Construct a DataSet. """ assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(np.float32) images = np.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels
Example 48
def prop_backward(self, X, y): layers_rev = list(reversed(self.layers)) Zs_rev = list(reversed(self.Zs)) As_rev = list(reversed(self.As)) As_rev.append(X) delta0 = np.multiply(-(y - As_rev[0]), self.sigma_prime(Zs_rev[0])) djdw0 = np.dot(As_rev[1].T, delta0) self.deltas = [delta0] self.djdws = [djdw0] for i in xrange(0, len(layers_rev) - 1): delta_n = np.dot(self.deltas[i], layers_rev[i].W.T) * \ self.sigma_prime(Zs_rev[i + 1]) djdw_n = np.dot(As_rev[i + 2].T, delta_n) self.deltas.append(delta_n) self.djdws.append(djdw_n) self.deltas = list(reversed(self.deltas)) self.djdws = list(reversed(self.djdws))
Example 49
def prop_backward(self, X, y): layers_rev = list(reversed(self.layers)) Zs_rev = list(reversed(self.Zs)) As_rev = list(reversed(self.As)) As_rev.append(X) delta0 = np.multiply(-(y - As_rev[0]), self.sigma_prime(Zs_rev[0])) djdw0 = np.dot(As_rev[1].T, delta0) self.deltas = [delta0] self.djdws = [djdw0] for i in xrange(0, len(layers_rev) - 1): delta_n = np.dot(self.deltas[i], layers_rev[i].W.T) * \ self.sigma_prime(Zs_rev[i + 1]) djdw_n = np.dot(As_rev[i + 2].T, delta_n) self.deltas.append(delta_n) self.djdws.append(djdw_n) self.deltas = list(reversed(self.deltas)) self.djdws = list(reversed(self.djdws))
Example 50
def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0