Python numpy.diag() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def rhoA(self):
        # rhoA
        rhoA = pd.DataFrame(0, index=np.arange(1), columns=self.latent)

        for i in range(self.lenlatent):
            weights = pd.DataFrame(self.outer_weights[self.latent[i]])
            weights = weights[(weights.T != 0).any()]
            result = pd.DataFrame.dot(weights.T, weights)
            result_ = pd.DataFrame.dot(weights, weights.T)

            S = self.data_[self.Variables['measurement'][
                self.Variables['latent'] == self.latent[i]]]
            S = pd.DataFrame.dot(S.T, S) / S.shape[0]
            numerador = (
                np.dot(np.dot(weights.T, (S - np.diag(np.diag(S)))), weights))
            denominador = (
                (np.dot(np.dot(weights.T, (result_ - np.diag(np.diag(result_)))), weights)))
            rhoA_ = ((result)**2) * (numerador / denominador)
            if(np.isnan(rhoA_.values)):
                rhoA[self.latent[i]] = 1
            else:
                rhoA[self.latent[i]] = rhoA_.values

        return rhoA.T 

Example 2

def annopred_inf(beta_hats, pr_sigi, n=1000, reference_ld_mats=None, ld_window_size=100):
    """
    infinitesimal model with snp-specific heritability derived from annotation
    used as the initial values for MCMC of non-infinitesimal model
    """
    num_betas = len(beta_hats)
    updated_betas = sp.empty(num_betas)
    m = len(beta_hats)

    for i, wi in enumerate(range(0, num_betas, ld_window_size)):
        start_i = wi
        stop_i = min(num_betas, wi + ld_window_size)
        curr_window_size = stop_i - start_i
        Li = 1.0/pr_sigi[start_i: stop_i]
        D = reference_ld_mats[i]
        A = (n/(1))*D + sp.diag(Li)
        A_inv = linalg.pinv(A)
        updated_betas[start_i: stop_i] = sp.dot(A_inv / (1.0/n) , beta_hats[start_i: stop_i])  # Adjust the beta_hats

    return updated_betas 

Example 3

def alpha(self):
        # Cronbach Alpha
        alpha = pd.DataFrame(0, index=np.arange(1), columns=self.latent)

        for i in range(self.lenlatent):
            block = self.data_[self.Variables['measurement']
                               [self.Variables['latent'] == self.latent[i]]]
            p = len(block.columns)

            if(p != 1):
                p_ = len(block)
                correction = np.sqrt((p_ - 1) / p_)
                soma = np.var(np.sum(block, axis=1))
                cor_ = pd.DataFrame.corr(block)

                denominador = soma * correction**2
                numerador = 2 * np.sum(np.tril(cor_) - np.diag(np.diag(cor_)))

                alpha_ = (numerador / denominador) * (p / (p - 1))
                alpha[self.latent[i]] = alpha_
            else:
                alpha[self.latent[i]] = 1

        return alpha.T 

Example 4

def _compute_process_and_covariance_matrices(self, dt):
        """Computes the transition and covariance matrix of the process model and measurement model.

        Args:
             dt (float): Timestep of the discrete transition.

        Returns:
            F (numpy.ndarray): Transition matrix.
            Q (numpy.ndarray): Process covariance matrix.
            R (numpy.ndarray): Measurement covariance matrix.
        """
        F = np.array(np.bmat([[np.eye(3), dt * np.eye(3)], [np.zeros((3, 3)), np.eye(3)]]))
        self.process_matrix = F
        q_p = self.process_covariance_position
        q_v = self.process_covariance_velocity
        Q = np.diag([q_p, q_p, q_p, q_v, q_v, q_v]) ** 2 * dt
        r = self.measurement_covariance
        R = r * np.eye(4)
        self.process_covariance = Q
        self.measurement_covariance = R
        return F, Q, R 

Example 5

def get_covariance(self):
        """Compute data covariance with the generative model.
        ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)``
        where  S**2 contains the explained variances.
        Returns
        -------
        cov : array, shape=(n_features, n_features)
            Estimated covariance of data.
        """
        components_ = self.components_
        exp_var = self.explained_variance_
        if self.whiten:
            components_ = components_ * np.sqrt(exp_var[:, np.newaxis])
        exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.)
        cov = np.dot(components_.T * exp_var_diff, components_)
        cov.flat[::len(cov) + 1] += self.noise_variance_  # modify diag inplace
        return cov 

Example 6

def get_scores(self):
        """Returns accuracy score evaluation result.
            - overall accuracy
            - mean accuracy
            - mean IU
            - fwavacc
        """
        hist = self.confusion_matrix
        acc = np.diag(hist).sum() / hist.sum()
        acc_cls = np.diag(hist) / hist.sum(axis=1)
        acc_cls = np.nanmean(acc_cls)
        iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
        mean_iu = np.nanmean(iu)
        freq = hist.sum(axis=1) / hist.sum()
        fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
        cls_iu = dict(zip(range(self.n_classes), iu))

        return {'Overall Acc: \t': acc,
                'Mean Acc : \t': acc_cls,
                'FreqW Acc : \t': fwavacc,
                'Mean IoU : \t': mean_iu,}, cls_iu 

Example 7

def scale_variance(Theta, eps):
        """Allows to scale a Precision Matrix such that its
        corresponding covariance has unit variance

        Parameters
        ----------
        Theta: ndarray
            Precision Matrix
        eps: float
            values to threshold to zero

        Returns
        -------
        Theta: ndarray
            Precision of rescaled Sigma
        Sigma: ndarray
            Sigma with ones on diagonal
        """
        Sigma = np.linalg.inv(Theta)
        V = np.diag(np.sqrt(np.diag(Sigma) ** -1))
        Sigma = V.dot(Sigma).dot(V.T)  # = VSV
        Theta = np.linalg.inv(Sigma)
        Theta[np.abs(Theta) <= eps] = 0.
        return Theta, Sigma 

Example 8

def sampson_error(F, pts1, pts2): 
    """
    Computes the sampson error for F, and points pts1, pts2. Sampson
    error is the first order approximation to the geometric error.
    Remember that this is a squared error.
   
    (x'^{T} * F * x)^2
    -----------------
    (F * x)_1^2 + (F * x)_2^2 + (F^T * x')_1^2 + (F^T * x')_2^2

    where (F * x)_i^2 is the square of the i-th entry of the vector Fx
    """
    x1, x2 = unproject_points(pts1).T, unproject_points(pts2).T
    Fx1 = np.dot(F, x1)
    Fx2 = np.dot(F, x2)
       
    # Sampson distance as error measure
    denom = Fx1[0]**2 + Fx1[1]**2 + Fx2[0]**2 + Fx2[1]**2
    return ( np.diag(x1.T.dot(Fx2)) )**2 / denom 

Example 9

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape) 

Example 10

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = self.condition ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim),
                                diag(((self.condition / 10.)**.5) ** linspace(0, 1, dim)))

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape) 

Example 11

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            self.linearTF = dot(self.linearTF, self.rotation)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape) 

Example 12

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape)
            self.arrexpo = resize(self.beta * linspace(0, 1, dim), curshape) 

Example 13

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (1. / self.condition ** .5) ** linspace(0, 1, dim) # CAVE?
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)
            K = np.arange(0, 12)
            self.aK = np.reshape(0.5 ** K, (1, 12))
            self.bK = np.reshape(3. ** K, (1, 12))
            self.f0 = np.sum(self.aK * np.cos(2 * np.pi * self.bK * 0.5)) # optimal value

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape) 

Example 14

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape) 

Example 15

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = .5 * self._mu1 * sign(gauss(dim, self.rseed))
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            # self.arrxopt = resize(self.xopt, curshape)
            self.arrscales = resize(2. * sign(self.xopt), curshape) # makes up for xopt 

Example 16

def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True

    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]]) 

Example 17

def distribution_parameters(self, parameter_name):
		if parameter_name=='trend':
			E = dot(dot(self.derivative_matrix.T,inv(diag(self.parameters.list['omega'].current_value))),self.derivative_matrix)
			mean = dot(inv(eye(self.size)+E),self.data)
			cov = (self.parameters.list['sigma2'].current_value)*inv(eye(self.size)+E)
			return {'mean' : mean, 'cov' : cov}
		elif parameter_name=='sigma2':
			E = dot(dot(self.derivative_matrix.T,inv(diag(self.parameters.list['omega'].current_value))),self.derivative_matrix)
			pos = self.size
			loc = 0
			scale = 0.5*dot((self.data-dot(eye(self.size),self.parameters.list['trend'].current_value)).T,(self.data-dot(eye(self.size),self.parameters.list['trend'].current_value)))+0.5*dot(dot(self.parameters.list['trend'].current_value.T,E),self.parameters.list['trend'].current_value)
		elif parameter_name=='lambda2':
			pos = self.size-self.total_variation_order-1+self.alpha
			loc = 0.5*(norm(dot(self.derivative_matrix,self.parameters.list['trend'].current_value),ord=1))/self.parameters.list['sigma2'].current_value+self.rho
			scale = 1
		elif parameter_name==str('omega'):
			pos = [sqrt(((self.parameters.list['lambda2'].current_value**2)*self.parameters.list['sigma2'].current_value)/(dj**2)) for dj in dot(self.derivative_matrix,self.parameters.list['trend'].current_value)]
			loc = 0
			scale = self.parameters.list['lambda2'].current_value**2
		return {'pos' : pos, 'loc' : loc, 'scale' : scale} 

Example 18

def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True

    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]]) 

Example 19

def test_psi(adjcube):
    """Tests retrieval of the wave functions and eigenvalues.
    """
    from pydft.bases.fourier import psi, O, H
    cell = adjcube
    V = QHO(cell)
    W = W4(cell)
    Ns = W.shape[1]
    Psi, epsilon = psi(V, W, cell, forceR=False)

    #Make sure that the eigenvalues are real.
    assert np.sum(np.imag(epsilon)) < 1e-13
    
    checkI = np.dot(Psi.conjugate().T, O(Psi, cell))
    assert abs(np.sum(np.diag(checkI))-Ns) < 1e-13 # Should be the identity
    assert np.abs(np.sum(checkI)-Ns) < 1e-13
    
    checkD = np.dot(Psi.conjugate().T, H(V, Psi, cell))
    diagsum = np.sum(np.diag(checkD))
    assert np.abs(np.sum(checkD)-diagsum) < 1e-12 # Should be diagonal

    # Should match the diagonal elements of previous matrix
    assert np.allclose(np.diag(checkD), epsilon) 

Example 20

def computePolarVecs(self,karg=False):

        N = len(self.times)
        L = np.reshape(self.L,(3,N))

        if karg is False:
            A = self.computeRotMatrix()
        elif np.size(karg) is 3:
            A = self.computeRotMatrix(karg)
        elif np.size(karg) is 9:
            A = karg

        q = np.zeros((6,N))

        for pp in range(0,N):

            Lpp = np.diag(L[:,pp])
            p = np.dot(A,np.dot(Lpp,A.T))
            q[:,pp] = np.r_[p[:,0],p[[1,2],1],p[2,2]]

        return q 

Example 21

def toa_normalize(x0, y0):
    xdim = x0.shape[0]
    m = x0.shape[1]
    n = x0.shape[1]

    t = -x0[:, 1]
    x = x0 + np.tile(t, (1, m))
    y = y0 + np.tile(t, (1, n))

    qr_a = x[:, 2:(1 + xdim)]
    q, r = scipy.linalg.qr(qr_a)

    x = (q.conj().T) * x
    y = (q.conj().T) * y
    M = np.diag(sign(np.diag(qr_a)))
    x1 = M * x
    y1 = M * y

    return x1, y1 

Example 22

def update_per_row(self, y_i, phi_i, J, mu0, c, v, r_prev_i, u_prev_i, phi_r_i, phi_u):
        # Params:
        #   J - column indices

        nnz_i = len(J)
        residual_i = y_i - mu0 - c[J]
        prior_Phi = np.diag(np.concatenate(([phi_r_i], phi_u)))
        v_T = np.hstack((np.ones((nnz_i, 1)), v[J, :]))
        post_Phi_i = prior_Phi + \
                     np.dot(v_T.T,
                            np.tile(phi_i[:, np.newaxis], (1, 1 + self.num_factor)) * v_T)  # Weighted sum of v_j * v_j.T
        post_mean_i = np.squeeze(np.dot(phi_i * residual_i, v_T))
        C, lower = scipy.linalg.cho_factor(post_Phi_i)
        post_mean_i = scipy.linalg.cho_solve((C, lower), post_mean_i)
        # Generate Gaussian, recycling the Cholesky factorization from the posterior mean computation.
        ru_i = math.sqrt(1 - self.relaxation ** 2) * scipy.linalg.solve_triangular(C, np.random.randn(len(post_mean_i)),
                                                                                   lower=lower)
        ru_i += post_mean_i + self.relaxation * (post_mean_i - np.concatenate(([r_prev_i], u_prev_i)))
        r_i = ru_i[0]
        u_i = ru_i[1:]

        return r_i, u_i 

Example 23

def update_per_col(self, y_j, phi_j, I, mu0, r, u, c_prev_j, v_prev_j, phi_c_j, phi_v):

        prior_Phi = np.diag(np.concatenate(([phi_c_j], phi_v)))
        nnz_j = len(I)
        residual_j = y_j - mu0 - r[I]
        u_T = np.hstack((np.ones((nnz_j, 1)), u[I, :]))
        post_Phi_j = prior_Phi + \
                     np.dot(u_T.T,
                            np.tile(phi_j[:, np.newaxis], (1, 1 + self.num_factor)) * u_T)  # Weighted sum of u_i * u_i.T
        post_mean_j = np.squeeze(np.dot(phi_j * residual_j, u_T))
        C, lower = scipy.linalg.cho_factor(post_Phi_j)
        post_mean_j = scipy.linalg.cho_solve((C, lower), post_mean_j)
        # Generate Gaussian, recycling the Cholesky factorization from the posterior mean computation.
        cv_j = math.sqrt(1 - self.relaxation ** 2) * scipy.linalg.solve_triangular(C, np.random.randn(len(post_mean_j)),
                                                                              lower=lower)
        cv_j += post_mean_j + self.relaxation * (post_mean_j - np.concatenate(([c_prev_j], v_prev_j)))
        c_j = cv_j[0]
        v_j = cv_j[1:]

        return c_j, v_j 

Example 24

def diag(v, k=0):
    """
    Extract a diagonal or construct a diagonal array.

    This function is the equivalent of `numpy.diag` that takes masked
    values into account, see `numpy.diag` for details.

    See Also
    --------
    numpy.diag : Equivalent function for ndarrays.

    """
    output = np.diag(v, k).view(MaskedArray)
    if getmask(v) is not nomask:
        output._mask = np.diag(v._mask, k)
    return output 

Example 25

def predict_log_likelihood(self, paths, latents):
        if self.recurrent:
            observations = np.array([p["observations"][:, self.obs_regressed] for p in paths])
            actions = np.array([p["actions"][:, self.act_regressed] for p in paths])
            obs_actions = np.concatenate([observations, actions], axis=2)  # latents must match first 2dim: (batch,time)
        else:
            observations = np.concatenate([p["observations"][:, self.obs_regressed] for p in paths])
            actions = np.concatenate([p["actions"][:, self.act_regressed] for p in paths])
            obs_actions = np.concatenate([observations, actions], axis=1)
            latents = np.concatenate(latents, axis=0)
        if self.noisify_traj_coef:
            noise = np.random.multivariate_normal(mean=np.zeros_like(np.mean(obs_actions, axis=0)),
                                                         cov=np.diag(np.mean(np.abs(obs_actions),
                                                                     axis=0) * self.noisify_traj_coef),
                                                         size=np.shape(obs_actions)[0])
            obs_actions += noise
        if self.use_only_sign:
            obs_actions = np.sign(obs_actions)
        return self._regressor.predict_log_likelihood(obs_actions, latents)  # see difference with fit above... 

Example 26

def lowb_mutual(self, paths, times=(0, None)):
        if self.recurrent:
            observations = np.array([p["observations"][times[0]:times[1], self.obs_regressed] for p in paths])
            actions = np.array([p["actions"][times[0]:times[1], self.act_regressed] for p in paths])
            obs_actions = np.concatenate([observations, actions], axis=2)
            latents = np.array([p['agent_infos']['latents'][times[0]:times[1]] for p in paths])
        else:
            observations = np.concatenate([p["observations"][times[0]:times[1], self.obs_regressed] for p in paths])
            actions = np.concatenate([p["actions"][times[0]:times[1], self.act_regressed] for p in paths])
            obs_actions = np.concatenate([observations, actions], axis=1)
            latents = np.concatenate([p['agent_infos']["latents"][times[0]:times[1]] for p in paths])
        if self.noisify_traj_coef:
            obs_actions += np.random.multivariate_normal(mean=np.zeros_like(np.mean(obs_actions,axis=0)),
                                                         cov=np.diag(np.mean(np.abs(obs_actions),
                                                                     axis=0) * self.noisify_traj_coef),
                                                         size=np.shape(obs_actions)[0])
        if self.use_only_sign:
            obs_actions = np.sign(obs_actions)
        H_latent = self.policy.latent_dist.entropy(self.policy.latent_dist_info)  # sum of entropies latents in

        return H_latent + np.mean(self._regressor.predict_log_likelihood(obs_actions, latents)) 

Example 27

def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True

    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]]) 

Example 28

def gaussianWeight(kernelSize, even=False):
    if even == True:
        weight = np.ones([kernelSize,kernelSize])
        weight = weight.reshape((1,kernelSize**2))
        weight = np.array(weight)[0]
        weight = np.diag(weight)
        return weight

    SIGMA = 1 #the standard deviation of your normal curve
    CORRELATION = 0 #see wiki for multivariate normal distributions
    weight = np.zeros([kernelSize,kernelSize])
    cpt = kernelSize%2 + kernelSize//2 #gets the center point
    for i in range(len(weight)):
        for j in range(len(weight)):
            ptx = i + 1
        pty = j + 1
        weight[i,j] = 1 / (2*np.pi*SIGMA**2) / (1-CORRELATION**2)**.5*np.exp(-1/(2*(1-CORRELATION**2))*((ptx-cpt)**2+(pty-cpt)**2)/(SIGMA**2))
	   # weight[i,j] = 1/SIGMA/(2*np.pi)**.5*np.exp(-(pt-cpt)**2/(2*SIGMA**2))
    weight = weight.reshape((1,kernelSize**2))
    weight = np.array(weight)[0] #convert to a 1D array
    weight = np.diag(weight) #convert to n**2xn**2 diagonal matrix

    return weight
	# return np.diag(weight) 

Example 29

def get_sigma(self):
        """Returns the co-variance matrix of the spline

        Return:
            (np.ndarray):
                Co-variance matrix for the EOS shape is (nxn) where n is the dof
                of the model
        """

        sigma = self.get_option('spline_sigma')

        return np.diag((sigma * self.prior.get_dof())**2)
        # alpha = 3/self.shape()\
        #         * np.log(self.get_option('spline_max')
        #                  /self.get_option('spline_min'))

        # beta = np.log(1 + self.get_option('spline_sigma'))
        #return self.gram 

Example 30

def test_model_pq(self):
        """Test the model PQ matrix generation
        """

        new_model = self.bayes.update(models={
            'simp': self.model.update_dof([4, 2])})

        P, q = new_model._get_model_pq()

        epsilon = np.array([2, 1])
        sigma = inv(np.diag(np.ones(2)))
        P_true = sigma
        q_true = -np.dot(epsilon, sigma)

        npt.assert_array_almost_equal(P, P_true, decimal=8)

        npt.assert_array_almost_equal(q, q_true, decimal=8) 

Example 31

def get_sigma(self, models):
        r"""Returns the variance matrix

        variance is

        .. math::

            \Sigma_i = \sigma_t^2 + \frac{\sigma_x^2}{V_{CJ}}

        **Where**
            - :math:`\sigma_t` is the error in time measurements
            - :math:`\sigma_x` is the error in sensor position
            - :math:`V_{CJ}` is the detonation velocity

        see :py:meth:`F_UNCLE.Utils.Experiment.Experiment.get_sigma`

        """

        eos = self.check_models(models)[0]

        return np.diag(np.ones(self.shape())) 

Example 32

def supcell(file, scale, outmode):
    from ababe.io.io import GeneralIO
    import os
    import numpy as np

    basefname = os.path.basename(file)

    gcell = GeneralIO.from_file(file)

    scale_matrix = np.diag(np.array(scale))
    sc = gcell.supercell(scale_matrix)

    out = GeneralIO(sc)

    print("PROCESSING: {:}".format(file))
    if outmode == 'stdio':
        out.write_file(fname=None, fmt='vasp')
    else:
        ofname = "{:}_SUPC.{:}".format(basefname.split('.')[0], outmode)
        out.write_file(ofname) 

Example 33

def do_seg_tests(net, iter, save_format, dataset, layer='score', gt='label'):
    n_cl = net.blobs[layer].channels
    if save_format:
        save_format = save_format.format(iter)
    hist, loss = compute_hist(net, save_format, dataset, layer, gt)
    # mean loss
    print '>>>', datetime.now(), 'Iteration', iter, 'loss', loss
    # overall accuracy
    acc = np.diag(hist).sum() / hist.sum()
    print '>>>', datetime.now(), 'Iteration', iter, 'overall accuracy', acc
    # per-class accuracy
    acc = np.diag(hist) / hist.sum(1)
    print '>>>', datetime.now(), 'Iteration', iter, 'mean accuracy', np.nanmean(acc)
    # per-class IU
    iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
    print '>>>', datetime.now(), 'Iteration', iter, 'mean IU', np.nanmean(iu)
    freq = hist.sum(1) / hist.sum()
    print '>>>', datetime.now(), 'Iteration', iter, 'fwavacc', \
            (freq[freq > 0] * iu[freq > 0]).sum()
    return hist 

Example 34

def label_accuracy_score(label_trues, label_preds, n_class):
    """Returns accuracy score evaluation result.

      - overall accuracy
      - mean accuracy
      - mean IU
      - fwavacc
    """
    hist = np.zeros((n_class, n_class))
    for lt, lp in zip(label_trues, label_preds):
        hist += _fast_hist(lt.flatten(), lp.flatten(), n_class)
    acc = np.diag(hist).sum() / hist.sum()
    acc_cls = np.diag(hist) / hist.sum(axis=1)
    acc_cls = np.nanmean(acc_cls)
    iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
    mean_iu = np.nanmean(iu)
    freq = hist.sum(axis=1) / hist.sum()
    fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
    return acc, acc_cls, mean_iu, fwavacc


# -----------------------------------------------------------------------------
# Visualization
# ----------------------------------------------------------------------------- 

Example 35

def fit(self, X):
        '''Required for featurewise_center, featurewise_std_normalization
        and zca_whitening.

        # Arguments
            X: Numpy array, the data to fit on.
        '''
        if self.featurewise_center:
            self.mean = np.mean(X, axis=0)
            X -= self.mean

        if self.featurewise_std_normalization:
            self.std = np.std(X, axis=0)
            X /= (self.std + 1e-7)

        if self.zca_whitening:
            flatX = np.reshape(X, (X.shape[0], X.shape[1] * X.shape[2] * X.shape[3]))
            sigma = np.dot(flatX.T, flatX) / flatX.shape[1]
            U, S, V = linalg.svd(sigma)
            self.principal_components = np.dot(np.dot(U, np.diag(1. / np.sqrt(S + 10e-7))), U.T) 

Example 36

def __init__(self):
        """Initialize variable used by Kalman Filter class
        Args:
            None
        Return:
            None
        """
        self.dt = 0.005  # delta time

        self.A = np.array([[1, 0], [0, 1]])  # matrix in observation equations
        self.u = np.zeros((2, 1))  # previous state vector

        # (x,y) tracking object center
        self.b = np.array([[0], [255]])  # vector of observations

        self.P = np.diag((3.0, 3.0))  # covariance matrix
        self.F = np.array([[1.0, self.dt], [0.0, 1.0]])  # state transition mat

        self.Q = np.eye(self.u.shape[0])  # process noise matrix
        self.R = np.eye(self.b.shape[0])  # observation noise matrix
        self.lastResult = np.array([[0], [255]]) 

Example 37

def draw(vmean, vlogstd):
        from scipy import stats
        plt.cla()
        xlimits = [-2, 2]
        ylimits = [-4, 2]

        def log_prob(z):
            z1, z2 = z[:, 0], z[:, 1]
            return stats.norm.logpdf(z2, 0, 1.35) + \
                stats.norm.logpdf(z1, 0, np.exp(z2))

        plot_isocontours(ax, lambda z: np.exp(log_prob(z)), xlimits, ylimits)

        def variational_contour(z):
            return stats.multivariate_normal.pdf(
                z, vmean, np.diag(np.exp(vlogstd)))

        plot_isocontours(ax, variational_contour, xlimits, ylimits)
        plt.draw()
        plt.pause(1.0 / 30.0) 

Example 38

def get_neg_log_post(Phi, sigma_J_list, ROI_list, G, MMT, q, Sigma_E,  GL,
                     nu, V, prior_on = False):
    eps = 1E-13
    p = Phi.shape[0]
    n_ROI = len(sigma_J_list)
    Qu = Phi.dot(Phi.T)
    G_Sigma_G = np.zeros(MMT.shape)
    for i in range(n_ROI):
        G_Sigma_G += sigma_J_list[i]**2 * np.dot(G[:,ROI_list[i]], G[:,ROI_list[i]].T)
    cov = Sigma_E + G_Sigma_G + GL.dot(Qu).dot(GL.T) 
    inv_cov = np.linalg.inv(cov)    
    eigs = np.real(np.linalg.eigvals(cov)) + eps
    log_det_cov = np.sum(np.log(eigs))  
    result = q*log_det_cov + np.trace(MMT.dot(inv_cov))
    if prior_on:
        inv_Q = np.linalg.inv(Qu)
        #det_Q = np.linalg.det(Qu)
        log_det_Q = np.sum(np.log(np.diag(Phi)**2))
        result =  result + np.float(nu+p+1)*log_det_Q+ np.trace(V.dot(inv_Q))
    return result

#==============================================================================
# update both Qu and Sigma_J, gradient of Qu and Sigma J 

Example 39

def fit(self, x):
        s = x.shape
        x = x.copy().reshape((s[0],np.prod(s[1:])))
        m = np.mean(x, axis=0)
        x -= m
        sigma = np.dot(x.T,x) / x.shape[0]
        U, S, V = linalg.svd(sigma)
        tmp = np.dot(U, np.diag(1./np.sqrt(S+self.regularization)))
        tmp2 = np.dot(U, np.diag(np.sqrt(S+self.regularization)))
        self.ZCA_mat = th.shared(np.dot(tmp, U.T).astype(th.config.floatX))
        self.inv_ZCA_mat = th.shared(np.dot(tmp2, U.T).astype(th.config.floatX))
        self.mean = th.shared(m.astype(th.config.floatX)) 

Example 40

def htmt(self):

        htmt_ = pd.DataFrame(pd.DataFrame.corr(self.data_),
                             index=self.manifests, columns=self.manifests)

        mean = []
        allBlocks = []
        for i in range(self.lenlatent):
            block_ = self.Variables['measurement'][
                self.Variables['latent'] == self.latent[i]]
            allBlocks.append(list(block_.values))
            block = htmt_.ix[block_, block_]
            mean_ = (block - np.diag(np.diag(block))).values
            mean_[mean_ == 0] = np.nan
            mean.append(np.nanmean(mean_))

        comb = [[k, j] for k in range(self.lenlatent)
                for j in range(self.lenlatent)]

        comb_ = [(np.sqrt(mean[comb[i][1]] * mean[comb[i][0]]))
                 for i in range(self.lenlatent ** 2)]

        comb__ = []
        for i in range(self.lenlatent ** 2):
            block = (htmt_.ix[allBlocks[comb[i][1]],
                              allBlocks[comb[i][0]]]).values
#            block[block == 1] = np.nan
            comb__.append(np.nanmean(block))

        htmt__ = np.divide(comb__, comb_)
        where_are_NaNs = np.isnan(htmt__)
        htmt__[where_are_NaNs] = 0

        htmt = pd.DataFrame(np.tril(htmt__.reshape(
            (self.lenlatent, self.lenlatent)), k=-1), index=self.latent, columns=self.latent)

        return htmt 

Example 41

def _solve_equation_least_squares(self, A, B):
        """Solve system of linear equations A X = B.
        Currently using Pseudo-inverse because it also allows for singular matrices.

        Args:
             A (numpy.ndarray): Left-hand side of equation.
             B (numpy.ndarray): Right-hand side of equation.

        Returns:
             X (numpy.ndarray): Solution of equation.
        """
        # Pseudo-inverse
        X = np.dot(np.linalg.pinv(A), B)
        # LU decomposition
        # lu, piv = scipy.linalg.lu_factor(A)
        # X = scipy.linalg.lu_solve((lu, piv), B)
        # Vanilla least-squares from numpy
        # X, _, _, _ = np.linalg.lstsq(A, B)
        # QR decomposition
        # Q, R, P = scipy.linalg.qr(A, mode='economic', pivoting=True)
        # # Find first zero element in R
        # out = np.where(np.diag(R) == 0)[0]
        # if out.size == 0:
        #     i = R.shape[0]
        # else:
        #     i = out[0]
        # B_prime = np.dot(Q.T, B)
        # X = np.zeros((A.shape[1], B.shape[1]), dtype=A.dtype)
        # X[P[:i], :] = scipy.linalg.solve_triangular(R[:i, :i], B_prime[:i, :])
        return X 

Example 42

def get_whitening_matrix(X, fudge=1E-18):
   from numpy.linalg import eigh
   Xcov = numpy.dot(X.T, X)/X.shape[0]
   d,V  = eigh(Xcov)
   D    = numpy.diag(1./numpy.sqrt(d+fudge))
   W    = numpy.dot(numpy.dot(V,D), V.T)
   return W 

Example 43

def fit(self, X, C, y, regions, kernelType, reml=True, maxiter=100):
	
		#construct a list of kernel names (one for each region) 
		if (kernelType == 'adapt'): kernelNames = self.buildKernelAdapt(X, C, y, regions, reml, maxiter)
		else: kernelNames = [kernelType] * len(regions)			
		
		#perform optimization
		kernelObj, hyp_kernels, sig2e, fixedEffects = self.optimize(X, C, y, kernelNames, regions, reml, maxiter)
		
		#compute posterior distribution
		Ktraintrain = kernelObj.getTrainKernel(hyp_kernels)
		post = self.infExact_scipy_post(Ktraintrain, C, y, sig2e, fixedEffects)
		
		#fix intercept if phenotype is binary
		if (len(np.unique(y)) == 2):			
			controls = (y<y.mean())
			cases = ~controls
			meanVec = C.dot(fixedEffects)
			mu, var = self.getPosteriorMeanAndVar(np.diag(Ktraintrain), Ktraintrain, post, meanVec)										
			fixedEffects[0] -= optimize.minimize_scalar(self.getNegLL, args=(mu, np.sqrt(sig2e+var), controls, cases), method='brent').x				
		
		#construct trainObj
		trainObj = dict([])
		trainObj['sig2e'] = sig2e
		trainObj['hyp_kernels'] = hyp_kernels
		trainObj['fixedEffects'] = fixedEffects		
		trainObj['kernelNames'] = kernelNames
		
		return trainObj 

Example 44

def getPosteriorMeanAndVar(self, diagKTestTest, KtrainTest, post, intercept=0):
		L = post['L']
		if (np.size(L) == 0): raise Exception('L is an empty array') #possible to compute it here
		Lchol = np.all((np.all(np.tril(L, -1)==0, axis=0) & (np.diag(L)>0)) & np.isreal(np.diag(L)))
		ns = diagKTestTest.shape[0]
		nperbatch = 5000
		nact = 0
		
		#allocate mem
		fmu = np.zeros(ns)	#column vector (of length ns) of predictive latent means
		fs2 = np.zeros(ns)	#column vector (of length ns) of predictive latent variances
		while (nact<(ns-1)):
			id = np.arange(nact, np.minimum(nact+nperbatch, ns))
			kss = diagKTestTest[id]		
			Ks = KtrainTest[:, id]
			if (len(post['alpha'].shape) == 1):
				try: Fmu = intercept[id] + Ks.T.dot(post['alpha'])
				except: Fmu = intercept + Ks.T.dot(post['alpha'])
				fmu[id] = Fmu
			else:
				try: Fmu = intercept[id][:, np.newaxis] + Ks.T.dot(post['alpha'])
				except: Fmu = intercept + Ks.T.dot(post['alpha'])
				fmu[id] = Fmu.mean(axis=1)
			if Lchol:
				V = la.solve_triangular(L, Ks*np.tile(post['sW'], (id.shape[0], 1)).T, trans=1, check_finite=False, overwrite_b=True)
				fs2[id] = kss - np.sum(V**2, axis=0)                       #predictive variances						
			else:
				fs2[id] = kss + np.sum(Ks * (L.dot(Ks)), axis=0)		   #predictive variances
			fs2[id] = np.maximum(fs2[id],0)  #remove numerical noise i.e. negative variances		
			nact = id[-1]    #set counter to index of last processed data point
			
		return fmu, fs2 

Example 45

def getTestKernelDiag(self, params, Xtest):
		self.checkParams(params)
		if (len(Xtest) != len(self.kernels)): raise Exception('Xtest should be a list with length equal to #kernels!')
		diag = 0
		params_ind = 0
		for k_i, k in enumerate(self.kernels):
			numHyp = k.getNumParams()
			diag += k.getTestKernelDiag(params[params_ind:params_ind+numHyp], Xtest[k_i])
			params_ind += numHyp
		return diag
		
		
			
		
#the only parameter here is the bias term c... 

Example 46

def getTestKernelDiag(self, params, Xtest):
		self.checkParams(params)
		b = np.exp(params[0])
		k = np.exp(params[1])
		M = 1.0 / (b + np.exp(k*self.D))
		Xtest_scaled = Xtest/np.sqrt(Xtest.shape[1])
		return np.diag((Xtest_scaled).dot(M).dot(Xtest_scaled.T))
		
		
		
		
#LD kernel with exponential decay but no bias term 

Example 47

def getTestKernelDiag(self, params, Xtest):
		self.checkParams(params)		
		k = np.exp(params[0])
		M = 1.0 / (1.0 + k*self.D)
		Xtest_scaled = Xtest/np.sqrt(Xtest.shape[1])
		return np.diag((Xtest_scaled).dot(M).dot(Xtest_scaled.T))
		
		
		
		
		
#LD kernel with polynomial decay 

Example 48

def getTestKernelDiag(self, params, Xtest):
		self.checkParams(params)		
		p = np.exp(params[0])
		k = np.exp(params[1])
		M = 1.0 / (1.0 + k*(self.D**p))
		Xtest_scaled = Xtest/np.sqrt(Xtest.shape[1])
		return np.diag((Xtest_scaled).dot(M).dot(Xtest_scaled.T)) 

Example 49

def symmetrize(X): return X + X.T - np.diag(X.diagonal())
	

#this code is directly translated from the GPML Matlab package (see attached license) 

Example 50

def l1_norm_off_diag(A):
        "convenience method for l1 norm, excluding diagonal"
        # let's speed this up later
        # assume A symmetric, sparse too
        return np.linalg.norm(A - np.diag(A.diagonal()), ord=1) 
点赞