The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def load_ROI_mask(self): proxy = nib.load(self.FLAIR_FILE) image_array = np.asarray(proxy.dataobj) mask = np.ones_like(image_array) mask[np.where(image_array < 90)] = 0 # img = nib.Nifti1Image(mask, proxy.affine) # nib.save(img, join(modalities_path,'mask.nii.gz')) struct_element_size = (20, 20, 20) mask_augmented = np.pad(mask, [(21, 21), (21, 21), (21, 21)], 'constant', constant_values=(0, 0)) mask_augmented = binary_closing(mask_augmented, structure=np.ones(struct_element_size, dtype=bool)).astype( np.int) return mask_augmented[21:-21, 21:-21, 21:-21].astype('bool')
Example 2
def blur(I, r): """ This method performs like cv2.blur(). Parameters ---------- I: NDArray Filtering input r: int Radius of blur filter Returns ------- q: NDArray Blurred output of I. """ ones = np.ones_like(I, dtype=np.float32) N = box_filter(ones, r) ret = box_filter(I, r) return ret / N
Example 3
def make_3d_mask(img_shape, center, radius, shape='sphere'): mask = np.zeros(img_shape) radius = np.rint(radius) center = np.rint(center) sz = np.arange(int(max(center[0] - radius, 0)), int(max(min(center[0] + radius + 1, img_shape[0]), 0))) sy = np.arange(int(max(center[1] - radius, 0)), int(max(min(center[1] + radius + 1, img_shape[1]), 0))) sx = np.arange(int(max(center[2] - radius, 0)), int(max(min(center[2] + radius + 1, img_shape[2]), 0))) sz, sy, sx = np.meshgrid(sz, sy, sx) if shape == 'cube': mask[sz, sy, sx] = 1. elif shape == 'sphere': distance2 = ((center[0] - sz) ** 2 + (center[1] - sy) ** 2 + (center[2] - sx) ** 2) distance_matrix = np.ones_like(mask) * np.inf distance_matrix[sz, sy, sx] = distance2 mask[(distance_matrix <= radius ** 2)] = 1 elif shape == 'gauss': z, y, x = np.ogrid[:mask.shape[0], :mask.shape[1], :mask.shape[2]] distance = ((z - center[0]) ** 2 + (y - center[1]) ** 2 + (x - center[2]) ** 2) mask = np.exp(- 1. * distance / (2 * radius ** 2)) mask[(distance > 3 * radius ** 2)] = 0 return mask
Example 4
def sim_target_fixed(target_data, target_labels, sigma, idx, target_params): """ Sets as target to have fixed similarity between all the training samples :param target_data: (not used) :param target_labels: (not used) :param sigma: not used :param idx: indices of the data samples to be used for the calculation of the similarity matrix :param target_params: expect to found the 'target_value' here :return: the similarity matrix and the corresponding mask """ if 'target_value' not in target_params: target_params['target_value'] = 0.0 Gt = np.ones((len(idx), len(idx))) Gt = Gt * target_params['target_value'] Gt_mask = np.ones_like(Gt) return np.float32(Gt), np.float32(Gt_mask)
Example 5
def getCylinderPoints(xc,zc,r): xLocOrig1 = np.arange(-r,r+r/10.,r/10.) xLocOrig2 = np.arange(r,-r-r/10.,-r/10.) # Top half of cylinder zLoc1 = np.sqrt(-xLocOrig1**2.+r**2.)+zc # Bottom half of cylinder zLoc2 = -np.sqrt(-xLocOrig2**2.+r**2.)+zc # Shift from x = 0 to xc xLoc1 = xLocOrig1 + xc*np.ones_like(xLocOrig1) xLoc2 = xLocOrig2 + xc*np.ones_like(xLocOrig2) topHalf = np.vstack([xLoc1,zLoc1]).T topHalf = topHalf[0:-1,:] bottomhalf = np.vstack([xLoc2,zLoc2]).T bottomhalf = bottomhalf[0:-1,:] cylinderPoints = np.vstack([topHalf,bottomhalf]) cylinderPoints = np.vstack([cylinderPoints,topHalf[0,:]]) return cylinderPoints
Example 6
def test_basic(self): dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128, np.longdouble, np.clongdouble] for dt in dts: c = np.ones(53, dtype=np.bool) assert_equal(np.where( c, dt(0), dt(1)), dt(0)) assert_equal(np.where(~c, dt(0), dt(1)), dt(1)) assert_equal(np.where(True, dt(0), dt(1)), dt(0)) assert_equal(np.where(False, dt(0), dt(1)), dt(1)) d = np.ones_like(c).astype(dt) e = np.zeros_like(d) r = d.astype(dt) c[7] = False r[7] = e[7] assert_equal(np.where(c, e, e), e) assert_equal(np.where(c, d, e), r) assert_equal(np.where(c, d, e[0]), r) assert_equal(np.where(c, d[0], e), r) assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2]) assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2]) assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3]) assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3]) assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2]) assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3]) assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3])
Example 7
def plot_series(series): plt.figure(1) # colors = [np.array([1, 0.1, 0.1]), np.array([0.1, 1, 0.1]), np.array([0.1, 0.1, 1])] colors = ['m', 'g', 'r', 'b', 'y'] for i, s in enumerate(series): print(s['x'], s['y'], s['std'], s['label']) small_number = np.ones_like(s['x']) * (s['x'][1]*0.1) x_axis = np.where(s['x'] == 0, small_number, s['x']) plt.plot(x_axis, s['y'], color=colors[i], label=s['label']) plt.fill_between(x_axis, s['y'] - s['std'], s['y'] + s['std'], color=colors[i], alpha=0.2) plt.semilogx() plt.xlabel('MI reward bonus') plt.ylabel('Final intrinsic reward') plt.title('Final intrinsic reward in pointMDP with 10 good modes') plt.legend(loc='best') plt.show()
Example 8
def predict(self, path): if 'env_infos' in path.keys() and 'full_path' in path['env_infos'].keys(): expanded_path = tensor_utils.flatten_first_axis_tensor_dict(path['env_infos']['full_path']) else: # when it comes from log_diagnostics it's already expanded (or if it was never aggregated) expanded_path = path bonus = self.visitation_bonus * self.predict_count(expanded_path) + \ self.dist_from_reset_bonus * self.predict_dist_from_reset(expanded_path) if self.snn_H_bonus: # I need the if because the snn bonus is only available when there are latents bonus += self.snn_H_bonus * self.predict_entropy(expanded_path) total_bonus = bonus + self.survival_bonus * np.ones_like(bonus) if 'env_infos' in path.keys() and 'full_path' in path['env_infos'].keys(): aggregated_bonus = [] full_path_rewards = path['env_infos']['full_path']['rewards'] total_steps = 0 for sub_rewards in full_path_rewards: aggregated_bonus.append(np.sum(total_bonus[total_steps:total_steps + len(sub_rewards)])) total_steps += len(sub_rewards) total_bonus = aggregated_bonus return np.array(total_bonus)
Example 9
def _initialize_filter(self): """Set up spectral filter or dealiasing.""" if self.use_filter: cphi=0.65*pi wvx=np.sqrt((self.k*self.dx)**2.+(self.l*self.dy)**2.) self.filtr = np.exp(-23.6*(wvx-cphi)**4.) self.filtr[wvx<=cphi] = 1. self.logger.info(' Using filter') elif self.dealias: self.filtr = np.ones_like(self.wv2) self.filtr[self.nx/3:2*self.nx/3,:] = 0. self.filtr[:,self.ny/3:2*self.ny/3] = 0. self.logger.info(' Dealiasing with 2/3 rule') else: self.filtr = np.ones_like(self.wv2) self.logger.info(' No dealiasing; no filter')
Example 10
def _initialize_filter(self): """ Set up spectral filter or dealiasing.""" if self.use_filter: cphi=0.65*pi wvx=np.sqrt((self.k*self.dx)**2.+(self.l*self.dy)**2.) self.filtr = np.exp(-23.6*(wvx-cphi)**4.) self.filtr[wvx<=cphi] = 1. self.logger.info(' Using filter') elif self.dealias: self.filtr = np.ones_like(self.wv2) self.filtr[self.nx//3:2*self.nx//3,:] = 0. self.filtr[:,self.ny//3:2*self.ny//3] = 0. self.logger.info(' Dealiasing with 2/3 rule') else: self.filtr = np.ones_like(self.wv2) self.logger.info(' No dealiasing; no filter')
Example 11
def flux(self, time, planets = None, cadence = 'lc'): ''' ''' # Ensure it's a list if planets is None: planets = self.planets elif type(planets) is str: planets = [planets] # Compute flux for each planet flux = np.ones_like(time) for planet in planets: if cadence == 'lc': model = ps.Transit(per = self.period[planet], b = self.b[planet], RpRs = self.RpRs[planet], t0 = self.t0[planet], rhos = self.rhos, ecc = self.ecc[planet], w = self.w[planet] * np.pi / 180., u1 = self.u1, u2 = self.u2, times = self.times[planet]) else: model = ps.Transit(per = self.period[planet], b = self.b[planet], RpRs = self.RpRs[planet], t0 = self.t0[planet], rhos = self.rhos, ecc = self.ecc[planet], w = self.w[planet] * np.pi / 180., u1 = self.u1, u2 = self.u2, times = self.times[planet], exptime = ps.KEPSHRTCAD) flux *= model(time) return flux
Example 12
def test_flat_tensor_dot_tensor(): """ Ensure that a flattened argument axis is not unflattend in the result. """ H = ng.make_axis(2) W = ng.make_axis(7) C = ng.make_axis(3) K = ng.make_axis(11) axes_a = ng.make_axes([H, W, C]) a = ng.constant(np.ones(axes_a.lengths), axes=axes_a) flat_a = ng.flatten_at(a, 2) axes_b = ng.make_axes([C, K]) b = ng.constant(np.ones(axes_b.lengths), axes=axes_b) result = ng.dot(b, flat_a) with ExecutorFactory() as factory: result_fun = factory.executor(result) result_val = result_fun() result_correct = np.ones_like(result_val) * C.length ng.testing.assert_allclose(result_val, result_correct)
Example 13
def __call__(self, input_data, weights): ''' input_data in this case is a numpy array with batch_size on axis 1 and weights is a matrix with 1 column ''' if self.state is None: self.state = np.ones_like(weights) if self.velocity is None: self.velocity = np.zeros_like(weights) gradient = - input_data.mean(axis=1) self.state[:] = self.decay_rate * self.state + \ (1.0 - self.decay_rate) * np.square(gradient) self.velocity = self.velocity * self.momentum + \ self.learning_rate * gradient / np.sqrt(self.state + self.epsilon) + \ self.learning_rate * self.wdecay * weights weights[:] = weights - self.velocity return weights
Example 14
def Affine_test(self,N,sizex,sizey,sizez,times,stop_time,typeofT,colors): for i in range(times): # Theta idx = np.random.uniform(-1, 1);idy = np.random.uniform(-1, 1);idz = np.random.uniform(-1, 1) swithx = np.random.uniform(0,1);swithy = np.random.uniform(0,1);swithz = np.random.uniform(0,1) rotatex = np.random.uniform(-1, 1);rotatey = np.random.uniform(-1, 1);rotatez = np.random.uniform(-1, 1) cx = np.array([idx,rotatey,rotatez,swithx]);cy = np.array([rotatex,idy,rotatez,swithy]);cz = np.array([rotatex,rotatey,idz,swithz]) # Source Grid x = np.linspace(-sizex, sizex, N);y = np.linspace(-sizey, sizey, N);z = np.linspace(-sizez, sizez, N) x, y, z = np.meshgrid(x, y, z) xgs, ygs, zgs = x.flatten(), y.flatten(),z.flatten() gps = np.vstack([xgs, ygs, zgs, np.ones_like(xgs)]).T # transform xgt = np.dot(gps, cx);ygt = np.dot(gps, cy);zgt = np.dot(gps, cz) # display showIm = ShowImage() showIm.Show_transform(xgs,ygs,zgs,xgt,ygt,zgt,sizex,sizey,sizez,stop_time,typeofT,N,colors)
Example 15
def pseudo_call_gene_low_level(simulationTime=None, rho=None, temperatureHat=None, densityHat=None, safetyFactor=None, ionMass=1, ionCharge=1, Lref=None, Bref=None, rhoStar=None, Tref=None, nref=None, checkpointSuffix=0): """Function to emulate a call to GENE with the same input arguments and return values. Used for testing other code when the overhead of an actual startup of GENE is not needed. Of course, this can only be used to test correctness of syntax, not correctness of values. """ # check inputs have been provided for var in (simulationTime, rho, temperatureHat, densityHat, safetyFactor, Lref, Bref, rhoStar, Tref, nref): if var is None: #logging.error("Input variables must be provided in call_gene_low_level.") raise ValueError MPIrank = 1 dVdxHat = np.ones_like(rho) sqrt_gxx = np.ones_like(rho) avgParticleFluxHat = np.ones_like(rho) avgHeatFluxHat = np.ones_like(rho) temperatureOutput = np.ones_like(rho) densityOutput = np.ones_like(rho) return (MPIrank, dVdxHat, sqrt_gxx, avgParticleFluxHat, avgHeatFluxHat, temperatureOutput, densityOutput)
Example 16
def _add_noise(v, amplitude): """Add noise to an array v in the following way:. noisy_v = (1+h) * v where h is a random noise with specified standard deviation. The noise h is trimmed to be zero close to both boundaries. Inputs: v input to add noise to (array) ampltitude specified standard deviation of noise (scalar) tac autocorrelation time measured in discrete samples (scalar) Outputs: noisy_v v with noise """ # generate noise that is constant throughout space h = np.random.normal(scale=amplitude) * np.ones_like(v) # damped the sides of the noise close to the boundaries h = dampen_sides(h) noisy_v = (1 + h) * v return noisy_v
Example 17
def __call__(self, t, x, n): # Define the contributions to the H coefficients for the Shestakov Problem H1 = np.ones_like(x) #H7 = shestakov_nonlinear_diffusion.H7contrib_Source(x) H7 = source(x) (H2turb, H3, extradata) = self.turbhandler.Hcontrib_turbulent_flux(n) H4 = None H6 = None # add "other" diffusive contributions by specifying a diffusivity, H2 = V'D [but V' = 1 here] H2constdiff = 0.03 def diffusivity_right(x): diffusivity = np.zeros_like(x) xr = 0.85 D0 = 7 diffusivity[x > xr] = D0 return diffusivity H2 = H2turb + H2constdiff #H2 = H2turb + H2constdiff + diffusivity_right(x) # if adding const to right edge return (H1, H2, H3, H4, H6, H7, extradata)
Example 18
def __call__(self, t, x, n): # Define the contributions to the H coefficients for the Shestakov Problem H1 = np.ones_like(x) #H7 = shestakov_nonlinear_diffusion.H7contrib_Source(x) H7 = source(x) (H2turb, H3, extradata) = self.turbhandler.Hcontrib_turbulent_flux(n) H4 = None H6 = None # add "other" diffusive contributions by specifying a diffusivity, H2 = V'D [but V' = 1 here] H2constdiff = 0.03 def diffusivity_right(x): diffusivity = np.zeros_like(x) xr = 0.85 D0 = 7 diffusivity[x > xr] = D0 return diffusivity H2 = H2turb + H2constdiff #H2 = H2turb + H2constdiff + diffusivity_right(x) # if adding const to right edge return (H1, H2, H3, H4, H6, H7, extradata)
Example 19
def setup_parameters_different_grids_tango_inside(): # set up radial grids with Tango's outer radial boundary radially inward that of GENE. simulationTime = 0.4 Lref = 1.65 Bref = 2.5 majorRadius = 1.65 minorRadius = 0.594 rhoStar = 1/140 checkpointSuffix = 999 numRadialPtsTango = 100 numRadialPtsGene = 80 rhoTango = np.linspace(0.1, 0.8, numRadialPtsTango) # rho = r/a rhoGene = np.linspace(0.2, 0.9, numRadialPtsGene) rTango = rhoTango * minorRadius # physical radius r rGene = rhoGene * minorRadius safetyFactorGeneGrid = tango.parameters.analytic_safety_factor(rGene, minorRadius, majorRadius) e = 1.60217662e-19 # electron charge temperatureGeneGrid = 1000 * e * np.ones_like(rGene) densityTangoGrid = 1e19 * np.ones_like(rTango) densityGeneGrid = 1e19 * np.ones_like(rGene) gridMapper = tango.interfacegrids_gene.GridInterfaceTangoInside(rTango, rGene) return (simulationTime, rTango, rGene, temperatureGeneGrid, densityTangoGrid, densityGeneGrid, safetyFactorGeneGrid, Lref, Bref, majorRadius, minorRadius, rhoStar, gridMapper, checkpointSuffix)
Example 20
def setup_parameters_different_grids_tango_outside(): # set up radial grids with Tango's outer radial boundary radially inward that of GENE. simulationTime = 0.4 Lref = 1.65 Bref = 2.5 majorRadius = 1.65 minorRadius = 0.594 rhoStar = 1/140 checkpointSuffix = 999 numRadialPtsTango = 100 numRadialPtsGene = 80 rhoTango = np.linspace(0.1, 0.9, numRadialPtsTango) # rho = r/a rhoGene = np.linspace(0.2, 0.7, numRadialPtsGene) rTango = rhoTango * minorRadius # physical radius r rGene = rhoGene * minorRadius safetyFactorGeneGrid = tango.parameters.analytic_safety_factor(rGene, minorRadius, majorRadius) e = 1.60217662e-19 # electron charge temperatureGeneGrid = 1000 * e * np.ones_like(rGene) densityTangoGrid = 1e19 * np.ones_like(rTango) densityGeneGrid = 1e19 * np.ones_like(rGene) gridMapper = tango.interfacegrids_gene.GridInterfaceTangoOutside(rTango, rGene) return (simulationTime, rTango, rGene, temperatureGeneGrid, densityTangoGrid, densityGeneGrid, safetyFactorGeneGrid, Lref, Bref, majorRadius, minorRadius, rhoStar, gridMapper, checkpointSuffix)
Example 21
def test_energy_conservation_sech2disk_manyparticles(): # Test that energy is conserved for a self-gravitating disk N= 101 totmass= 1. sigma= 1. zh= 2.*sigma**2./totmass x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh v= numpy.random.normal(size=N)*sigma v-= numpy.mean(v) # stabilize m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1)) g= wendy.nbody(x,v,m,0.05) E= wendy.energy(x,v,m) cnt= 0 while cnt < 100: tx,tv= next(g) assert numpy.fabs(wendy.energy(tx,tv,m)-E) < 10.**-10., "Energy not conserved during simple N-body integration" cnt+= 1 return None
Example 22
def test_energy_conservation_sech2disk_manyparticles(): # Test that energy is conserved for a self-gravitating disk N= 101 totmass= 1. sigma= 1. zh= 2.*sigma**2./totmass x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh v= numpy.random.normal(size=N)*sigma v-= numpy.mean(v) # stabilize m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1)) omega= 1.1 g= wendy.nbody(x,v,m,0.05,omega=omega) E= wendy.energy(x,v,m,omega=omega) cnt= 0 while cnt < 100: tx,tv= next(g) assert numpy.fabs(wendy.energy(tx,tv,m,omega=omega)-E) < 10.**-10., "Energy not conserved during simple N-body integration with external harmonic potential" cnt+= 1 return None
Example 23
def test_energy_conservation_sech2disk_manyparticles(): # Test that energy is conserved for a self-gravitating disk N= 101 totmass= 1. sigma= 1. zh= 2.*sigma**2./totmass x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh v= numpy.random.normal(size=N)*sigma v-= numpy.mean(v) # stabilize m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1)) g= wendy.nbody(x,v,m,0.05,approx=True,nleap=1000) E= wendy.energy(x,v,m) cnt= 0 while cnt < 100: tx,tv= next(g) assert numpy.fabs(wendy.energy(tx,tv,m)-E)/E < 10.**-6., "Energy not conserved during approximate N-body integration" cnt+= 1 return None
Example 24
def test_notracermasses(): # approx should work with tracer sheets # Test that energy is conserved for a self-gravitating disk N= 101 totmass= 1. sigma= 1. zh= 2.*sigma**2./totmass x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh v= numpy.random.normal(size=N)*sigma v-= numpy.mean(v) # stabilize m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1)) m[N//2:]= 0. m*= 2. g= wendy.nbody(x,v,m,0.05,approx=True,nleap=1000) E= wendy.energy(x,v,m) cnt= 0 while cnt < 100: tx,tv= next(g) assert numpy.fabs(wendy.energy(tx,tv,m)-E)/E < 10.**-6., "Energy not conserved during approximate N-body integration with some tracer particles" cnt+= 1 return None
Example 25
def test_energy_conservation_sech2disk_manyparticles(): # Test that energy is conserved for a self-gravitating disk N= 101 totmass= 1. sigma= 1. zh= 2.*sigma**2./totmass x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh v= numpy.random.normal(size=N)*sigma v-= numpy.mean(v) # stabilize m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1)) omega= 1.1 g= wendy.nbody(x,v,m,0.05,omega=omega,approx=True,nleap=1000) E= wendy.energy(x,v,m,omega=omega) cnt= 0 while cnt < 100: tx,tv= next(g) assert numpy.fabs(wendy.energy(tx,tv,m,omega=omega)-E)/E < 10.**-6., "Energy not conserved during approximate N-body integration with external harmonic potential" cnt+= 1 return None
Example 26
def test_againstexact_sech2disk_manyparticles(): # Test that the exact N-body and the approximate N-body agree N= 101 totmass= 1. sigma= 1. zh= 2.*sigma**2./totmass x= numpy.arctanh(2.*numpy.random.uniform(size=N)-1)*zh v= numpy.random.normal(size=N)*sigma v-= numpy.mean(v) # stabilize m= numpy.ones_like(x)/N*(1.+0.1*(2.*numpy.random.uniform(size=N)-1)) omega= 1.1 g= wendy.nbody(x,v,m,0.05,approx=True,nleap=2000,omega=omega) ge= wendy.nbody(x,v,m,0.05,omega=omega) cnt= 0 while cnt < 100: tx,tv= next(g) txe,tve= next(ge) assert numpy.all(numpy.fabs(tx-txe) < 10.**-5.), "Exact and approximate N-body give different positions" assert numpy.all(numpy.fabs(tv-tve) < 10.**-5.), "Exact and approximate N-body give different positions" cnt+= 1 return None
Example 27
def gain_substitution_scalar(gain, x, xwt): nants, nchan, nrec, _ = gain.shape newgain = numpy.ones_like(gain, dtype='complex') gwt = numpy.zeros_like(gain, dtype='float') # We are going to work with Jones 2x2 matrix formalism so everything has to be # converted to that format x = x.reshape(nants, nants, nchan, nrec, nrec) xwt = xwt.reshape(nants, nants, nchan, nrec, nrec) for ant1 in range(nants): for chan in range(nchan): # Loop over e.g. 'RR', 'LL, or 'xx', 'YY' ignoring cross terms top = numpy.sum(x[:, ant1, chan, 0, 0] * gain[:, chan, 0, 0] * xwt[:, ant1, chan, 0, 0], axis=0) bot = numpy.sum((gain[:, chan, 0, 0] * numpy.conjugate(gain[:, chan, 0, 0]) * xwt[:, ant1, chan, 0, 0]).real, axis=0) if bot > 0.0: newgain[ant1, chan, 0, 0] = top / bot gwt[ant1, chan, 0, 0] = bot else: newgain[ant1, chan, 0, 0] = 0.0 gwt[ant1, chan, 0, 0] = 0.0 return newgain, gwt
Example 28
def test_balance_weights(self): labels = [1, 1, -1, -1, -1] predictions = [-1, -1, 1, 1, 1] # all errors default_weights = np.abs(center(np.asarray(labels))) exp_error = balanced_classification_error(labels, predictions) error = balanced_classification_error(labels, predictions, default_weights) assert_equals(exp_error, error) null_weights = np.ones_like(labels) exp_error = classification_error(labels, predictions) error = balanced_classification_error(labels, predictions, null_weights) assert_equals(exp_error, error) # Balanced classes labels = [1, 1, 1, -1, -1, -1] predictions = [-1, -1, -1, 1, 1, 1] # all errors exp_error = classification_error(labels, predictions) error = balanced_classification_error(labels, predictions) assert_equals(exp_error, error)
Example 29
def test_balance_weights(): """Test balanced classification error with custom weights.""" labels = [1, 1, -1, -1, -1] predictions = [-1, -1, 1, 1, 1] # all errors default_weights = np.abs(center(np.asarray(labels))) exp_error = balanced_classification_error(labels, predictions) error = balanced_classification_error(labels, predictions, default_weights) assert_equals(exp_error, error) null_weights = np.ones_like(labels) exp_error = classification_error(labels, predictions) error = balanced_classification_error(labels, predictions, null_weights) assert_equals(exp_error, error) # Balanced classes labels = [1, 1, 1, -1, -1, -1] predictions = [-1, -1, -1, 1, 1, 1] # all errors exp_error = classification_error(labels, predictions) error = balanced_classification_error(labels, predictions) assert_equals(exp_error, error)
Example 30
def initialize_labels(self, Y): y_nodes_flat = [y_val for y in Y for y_val in y.nodes] y_links_flat = [y_val for y in Y for y_val in y.links] self.prop_encoder_ = LabelEncoder().fit(y_nodes_flat) self.link_encoder_ = LabelEncoder().fit(y_links_flat) self.n_prop_states = len(self.prop_encoder_.classes_) self.n_link_states = len(self.link_encoder_.classes_) self.prop_cw_ = np.ones_like(self.prop_encoder_.classes_, dtype=np.double) self.link_cw_ = compute_class_weight(self.class_weight, self.link_encoder_.classes_, y_links_flat) self.link_cw_ /= self.link_cw_.min() logging.info('Setting node class weights {}'.format(", ".join( "{}: {}".format(lbl, cw) for lbl, cw in zip( self.prop_encoder_.classes_, self.prop_cw_)))) logging.info('Setting link class weights {}'.format(", ".join( "{}: {}".format(lbl, cw) for lbl, cw in zip( self.link_encoder_.classes_, self.link_cw_))))
Example 31
def get_adagrad(learning_rate=0.5): """ Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hazan and Yoram Singer, Journal of Machine Learning Research 12 (2011) 2121-2159 http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf """ sum_square_gradient = None def adagrad(gradient): nonlocal sum_square_gradient if sum_square_gradient is None: sum_square_gradient = np.ones_like(gradient) sum_square_gradient += gradient ** 2 return learning_rate / np.sqrt(sum_square_gradient) return adagrad
Example 32
def load_data(self): # Create the data using magic numbers to approximate the figure in # canevet_icml2016 x = np.linspace(0, 1, self.N).astype(np.float32) ones = np.ones_like(x).astype(int) boundary = np.sin(4*(x + 0.5)**5)/3 + 0.5 data = np.empty(shape=[self.N, self.N, 3], dtype=np.float32) data[:, :, 0] = 1-x for i in range(self.N): data[i, :, 1] = 1-x[i] data[i, :, 2] = 1 / (1 + np.exp(self.smooth*(x - boundary[i]))) data[i, :, 2] = np.random.binomial(ones, data[i, :, 2]) data = data.reshape(-1, 3) np.random.shuffle(data) # Create train and test arrays split = int(len(data)*self.test_split) X_train = data[:-split, :2] y_train = data[:-split, 2] X_test = data[-split:, :2] y_test = data[-split:, 2] return (X_train, y_train), (X_test, y_test)
Example 33
def __init__(self, dataset, reweighting, model, large_batch=1024, forward_batch_size=128, steps_per_epoch=300, recompute=2, s_e=(1, 1), n_epochs=1): super(OnlineBatchSelectionSampler, self).__init__( dataset, reweighting, model, large_batch=large_batch, forward_batch_size=forward_batch_size ) # The configuration of OnlineBatchSelection self.steps_per_epoch = steps_per_epoch self.recompute = recompute self.s_e = s_e self.n_epochs = n_epochs # Mutable variables to be updated self._batch = 0 self._epoch = 0 self._raw_scores = np.ones((len(dataset.train_data),)) self._scores = np.ones_like(self._raw_scores) self._ranks = np.arange(len(dataset.train_data))
Example 34
def load_data(self): # Create the data using magic numbers to approximate the figure in # canevet_icml2016 x = np.linspace(0, 1, self.N).astype(np.float32) ones = np.ones_like(x).astype(int) boundary = np.sin(4*(x + 0.5)**5)/3 + 0.5 data = np.empty(shape=[self.N, self.N, 3], dtype=np.float32) data[:, :, 0] = 1-x for i in range(self.N): data[i, :, 1] = 1-x[i] data[i, :, 2] = 1 / (1 + np.exp(self.smooth*(x - boundary[i]))) data[i, :, 2] = np.random.binomial(ones, data[i, :, 2]) data = data.reshape(-1, 3) np.random.shuffle(data) # Create train and test arrays split = int(len(data)*self.test_split) X_train = data[:-split, :2] y_train = data[:-split, 2] X_test = data[-split:, :2] y_test = data[-split:, 2] return (X_train, y_train), (X_test, y_test)
Example 35
def __init__(self, dataset, reweighting, model, large_batch=1024, forward_batch_size=128, steps_per_epoch=300, recompute=2, s_e=(1, 1), n_epochs=1): super(OnlineBatchSelectionSampler, self).__init__( dataset, reweighting, model, large_batch=large_batch, forward_batch_size=forward_batch_size ) # The configuration of OnlineBatchSelection self.steps_per_epoch = steps_per_epoch self.recompute = recompute self.s_e = s_e self.n_epochs = n_epochs # Mutable variables to be updated self._batch = 0 self._epoch = 0 self._raw_scores = np.ones((len(dataset.train_data),)) self._scores = np.ones_like(self._raw_scores) self._ranks = np.arange(len(dataset.train_data))
Example 36
def load_data(self): # Create the data using magic numbers to approximate the figure in # canevet_icml2016 x = np.linspace(0, 1, self.N).astype(np.float32) ones = np.ones_like(x).astype(int) boundary = np.sin(4*(x + 0.5)**5)/3 + 0.5 data = np.empty(shape=[self.N, self.N, 3], dtype=np.float32) data[:, :, 0] = 1-x for i in range(self.N): data[i, :, 1] = 1-x[i] data[i, :, 2] = 1 / (1 + np.exp(self.smooth*(x - boundary[i]))) data[i, :, 2] = np.random.binomial(ones, data[i, :, 2]) data = data.reshape(-1, 3) np.random.shuffle(data) # Create train and test arrays split = int(len(data)*self.test_split) X_train = data[:-split, :2] y_train = data[:-split, 2] X_test = data[-split:, :2] y_test = data[-split:, 2] return (X_train, y_train), (X_test, y_test)
Example 37
def load_data(self): # Create the data using magic numbers to approximate the figure in # canevet_icml2016 x = np.linspace(0, 1, self.N).astype(np.float32) ones = np.ones_like(x).astype(int) boundary = np.sin(4*(x + 0.5)**5)/3 + 0.5 data = np.empty(shape=[self.N, self.N, 3], dtype=np.float32) data[:, :, 0] = 1-x for i in range(self.N): data[i, :, 1] = 1-x[i] data[i, :, 2] = 1 / (1 + np.exp(self.smooth*(x - boundary[i]))) data[i, :, 2] = np.random.binomial(ones, data[i, :, 2]) data = data.reshape(-1, 3) np.random.shuffle(data) # Create train and test arrays split = int(len(data)*self.test_split) X_train = data[:-split, :2] y_train = data[:-split, 2] X_test = data[-split:, :2] y_test = data[-split:, 2] return (X_train, y_train), (X_test, y_test)
Example 38
def __init__(self, dataset, reweighting, model, large_batch=1024, forward_batch_size=128, steps_per_epoch=300, recompute=2, s_e=(1, 1), n_epochs=1): super(OnlineBatchSelectionSampler, self).__init__( dataset, reweighting, model, large_batch=large_batch, forward_batch_size=forward_batch_size ) # The configuration of OnlineBatchSelection self.steps_per_epoch = steps_per_epoch self.recompute = recompute self.s_e = s_e self.n_epochs = n_epochs # Mutable variables to be updated self._batch = 0 self._epoch = 0 self._raw_scores = np.ones((len(dataset.train_data),)) self._scores = np.ones_like(self._raw_scores) self._ranks = np.arange(len(dataset.train_data))
Example 39
def get_data(discrete_time): y_test, y_train, u_train = generate_weibull(A=real_a, B=real_b, # <np.inf -> impose censoring C=censoring_point, shape=[n_sequences, n_timesteps, 1], discrete_time=discrete_time) # With random input it _should_ learn weight 0 x_train = x_test = np.random.uniform( low=-1, high=1, size=[n_sequences, n_timesteps, n_features]) # y_test is uncencored data y_test = np.append(y_test, np.ones_like(y_test), axis=-1) y_train = np.append(y_train, u_train, axis=-1) return y_train, x_train, y_test, x_test
Example 40
def test_ignore_nans(self): """ Test that NaNs are ignored. """ source = [np.ones((16,), dtype = np.float) for _ in range(10)] source.append(np.full_like(source[0], np.nan)) product = cprod(source, ignore_nan = True) self.assertTrue(np.allclose(product, np.ones_like(product)))
Example 41
def test_dtype(self): """ Test that dtype argument is working """ source = [np.ones((16,), dtype = np.float) for _ in range(10)] product = cprod(source, dtype = np.int) self.assertTrue(np.allclose(product, np.ones_like(product))) self.assertEqual(product.dtype, np.int)
Example 42
def test_trivial(self): """ Test a product of ones """ source = [np.ones((16,), dtype = np.float) for _ in range(10)] product = last(iprod(source)) self.assertTrue(np.allclose(product, np.ones_like(product)))
Example 43
def test_ignore_nans(self): """ Test that NaNs are ignored. """ source = [np.ones((16,), dtype = np.float) for _ in range(10)] source.append(np.full_like(source[0], np.nan)) product = last(iprod(source, ignore_nan = True)) self.assertTrue(np.allclose(product, np.ones_like(product)))
Example 44
def test_dtype(self): """ Test that dtype argument is working """ source = [np.ones((16,), dtype = np.float) for _ in range(10)] product = last(iprod(source, dtype = np.int)) self.assertTrue(np.allclose(product, np.ones_like(product))) self.assertEqual(product.dtype, np.int)
Example 45
def test_trivial(self): """ Test a product of ones """ source = [np.ones((16,), dtype = np.float) for _ in range(10)] product = last(inanprod(source)) self.assertTrue(np.allclose(product, np.ones_like(product)))
Example 46
def composed_triangular_mesh(triangular_mesh_dict): start_time = time() print "--> Composing triangular mesh..." mesh = TriangularMesh() triangle_cell_matching = {} mesh_points = np.concatenate([triangular_mesh_dict[c].points.keys() for c in triangular_mesh_dict.keys()]) mesh_point_positions = np.concatenate([triangular_mesh_dict[c].points.values() for c in triangular_mesh_dict.keys()]) mesh.points = dict(zip(mesh_points,mesh_point_positions)) mesh_triangles = np.concatenate([triangular_mesh_dict[c].triangles.values() for c in triangular_mesh_dict.keys()]) mesh.triangles = dict(zip(np.arange(len(mesh_triangles)),mesh_triangles)) mesh_cells = np.concatenate([c*np.ones_like(triangular_mesh_dict[c].triangles.keys()) for c in triangular_mesh_dict.keys()]) triangle_cell_matching = dict(zip(np.arange(len(mesh_triangles)),mesh_cells)) # for c in triangular_mesh_dict.keys(): # cell_start_time = time() # cell_mesh = triangular_mesh_dict[c] # # mesh_point_max_id = np.max(mesh.points.keys()) if len(mesh.points)>0 else 0 # mesh.points.update(cell_mesh.points) # if len(cell_mesh.triangles)>0: # mesh_triangle_max_id = np.max(mesh.triangles.keys()) if len(mesh.triangles)>0 else 0 # mesh.triangles.update(dict(zip(list(np.array(cell_mesh.triangles.keys())+mesh_triangle_max_id),cell_mesh.triangles.values()))) # triangle_cell_matching.update(dict(zip(list(np.array(cell_mesh.triangles.keys())+mesh_triangle_max_id),[c for f in cell_mesh.triangles]))) # cell_end_time = time() # print " --> Adding cell ",c," (",len(cell_mesh.triangles)," triangles ) [",cell_end_time-cell_start_time,"s]" end_time = time() print "<-- Composing triangular mesh [",end_time-start_time,"]" return mesh, triangle_cell_matching
Example 47
def _loess_predict(X, y_tr, X_pred, bandwidth): X_tr = np.column_stack((np.ones_like(X), X)) X_te = np.column_stack((np.ones_like(X_pred), X_pred)) y_te = [] for x in X_te: ws = np.exp(-np.sum((X_tr - x)**2, axis=1) / (2 * bandwidth**2)) W = scipy.sparse.dia_matrix((ws, 0), shape=(X_tr.shape[0],) * 2) theta = np.linalg.pinv(X_tr.T.dot(W.dot(X_tr))).dot(X_tr.T.dot(W.dot(y_tr))) y_te.append(np.dot(x, theta)) return np.array(y_te)
Example 48
def __init__(self, X, Y, batch_size, cropsize=0): assert len(X) == len(Y), 'X and Y must be the same length {}!={}'.format(len(X),len(Y)) print('starting balanced generator') self.X = X self.Y = Y self.cropsize=cropsize self.batch_size = int(batch_size) self.pmatrix = np.ones_like(self.Y) self.reset()
Example 49
def gamma_fullsum_grad( gamma, node_vec, eventmemes, etimes, T, mu, alpha, omega, W, beta, kernel_evaluate, K_evaluate, ): ''' it actually returns negated gradient. ''' gradres = np.ones_like(gamma) * -T * np.sum(mu) for (eventidx, (etime1, infected_u, eventmeme)) in \ enumerate(izip(etimes, node_vec, eventmemes)): gradres[eventmeme] += mu[infected_u] \ / np.exp(event_nonapproximated_logintensity( infected_u, eventmeme, etime1, T, etimes[:eventidx], node_vec[:eventidx], eventmemes[:eventidx], mu, gamma, omega, alpha, kernel_evaluate, )) return -gradres # =====
Example 50
def relu(x, deriv=False): ''' Rectifier function :param x: np.array :param deriv: derivate wanted ? :return: ''' if deriv: return np.ones_like(x) * (x > 0) return x * (x > 0)