The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def plot_spikepattern(spike_trains, sim_time): """Plot set of spike trains (spike pattern)""" plt.ioff() plt.figure() for i in xrange(len(spike_trains)): spike_times = spike_trains[i].value plt.plot(spike_times, np.full(len(spike_times), i, dtype=np.int), 'k.') plt.xlim((0.0, sim_time)) plt.ylim((0, len(spike_trains))) plt.xlabel('Time (ms)') plt.ylabel('Neuron index') plt.show() plt.ion()
Example 2
def label_and_build_mask(self, episode): is_catastrophe_array = np.array( [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None]) # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames]) labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool) mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool) for i in range(len(episode.frames)): if i + self.block_radius + 1 >= len(episode.frames): mask[i] = False continue if is_catastrophe_array[i]: mask[i] = False continue for j in range(self.block_radius + 1): if is_catastrophe_array[i + j + 1]: labels[i] = True break return labels, mask
Example 3
def label_and_build_mask(self, episode): is_catastrophe_array = np.array( [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None]) # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames]) labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool) mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool) for i in range(len(episode.frames)): if i + self.block_radius + 1 >= len(episode.frames): mask[i] = False continue if is_catastrophe_array[i]: mask[i] = False continue for j in range(self.block_radius + 1): if is_catastrophe_array[i + j + 1]: labels[i] = True break return labels, mask
Example 4
def label_and_build_mask(self, episode): is_catastrophe_array = np.array( [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None]) # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames]) labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool) mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool) for i in range(len(episode.frames)): if i + self.block_radius + 1 >= len(episode.frames): mask[i] = False continue if is_catastrophe_array[i]: mask[i] = False continue for j in range(self.block_radius + 1): if is_catastrophe_array[i + j + 1]: labels[i] = True break return labels, mask
Example 5
def label_and_build_mask(self, episode): is_catastrophe_array = np.array( [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None]) # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames]) labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool) mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool) for i in range(len(episode.frames)): if i + self.block_radius + 1 >= len(episode.frames): mask[i] = False continue if is_catastrophe_array[i]: mask[i] = False continue for j in range(self.block_radius + 1): if is_catastrophe_array[i + j + 1]: labels[i] = True break return labels, mask
Example 6
def label_and_build_mask(self, episode): is_catastrophe_array = np.array( [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None]) # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames]) labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool) mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool) for i in range(len(episode.frames)): if i + self.block_radius + 1 >= len(episode.frames): mask[i] = False continue if is_catastrophe_array[i]: mask[i] = False continue for j in range(self.block_radius + 1): if is_catastrophe_array[i + j + 1]: labels[i] = True break return labels, mask
Example 7
def setUp(self): super(BridgeTest, self).setUp() self.batch_size = 4 self.encoder_cell = tf.contrib.rnn.MultiRNNCell( [tf.contrib.rnn.GRUCell(4), tf.contrib.rnn.GRUCell(8)]) self.decoder_cell = tf.contrib.rnn.MultiRNNCell( [tf.contrib.rnn.LSTMCell(16), tf.contrib.rnn.GRUCell(8)]) final_encoder_state = nest.map_structure( lambda x: tf.convert_to_tensor( value=np.random.randn(self.batch_size, x), dtype=tf.float32), self.encoder_cell.state_size) self.encoder_outputs = EncoderOutput( outputs=tf.convert_to_tensor( value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32), attention_values=tf.convert_to_tensor( value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32), attention_values_length=np.full([self.batch_size], 10), final_state=final_encoder_state)
Example 8
def _normalise_data(self): self.train_x_mean = np.zeros(self.input_dim) self.train_x_std = np.ones(self.input_dim) self.train_y_mean = np.zeros(self.output_dim) self.train_y_std = np.ones(self.output_dim) if self.normalise_data: self.train_x_mean = np.mean(self.train_x, axis=0) self.train_x_std = np.std(self.train_x, axis=0) self.train_x_std[self.train_x_std == 0] = 1. self.train_x = (self.train_x - np.full(self.train_x.shape, self.train_x_mean, dtype=np.float32)) / \ np.full(self.train_x.shape, self.train_x_std, dtype=np.float32) self.test_x = (self.test_x - np.full(self.test_x.shape, self.train_x_mean, dtype=np.float32)) / \ np.full(self.test_x.shape, self.train_x_std, dtype=np.float32) self.train_y_mean = np.mean(self.train_y, axis=0) self.train_y_std = np.std(self.train_y, axis=0) if self.train_y_std == 0: self.train_y_std[self.train_y_std == 0] = 1. self.train_y = (self.train_y - self.train_y_mean) / self.train_y_std
Example 9
def fit_predict(self, ts): """ Unsupervised training of TSBitMaps. :param ts: 1-D numpy array or pandas.Series :return labels: `+1` for normal observations and `-1` for abnormal observations """ assert self._lag_window_size > self._feature_window_size, 'lag_window_size must be >= feature_window_size' self._ref_ts = ts scores = self._slide_chunks(ts) self._ref_bitmap_scores = scores thres = np.percentile(scores[self._lag_window_size: -self._lead_window_size + 1], self._q) labels = np.full(len(ts), 1) for idx, score in enumerate(scores): if score > thres: labels[idx] = -1 return labels
Example 10
def create_bitmap_grid(bitmap, n, num_bins, level_size): """ Arranges a time-series bitmap into a 2-D grid for heatmap visualization """ assert num_bins % n == 0, 'num_bins has to be a multiple of n' m = num_bins // n row_count = int(math.pow(m, level_size)) col_count = int(math.pow(n, level_size)) grid = np.full((row_count, col_count), 0.0) for feat, count in bitmap.items(): i, j = symbols2index(m, n, feat) grid[i, j] = count return grid
Example 11
def get_data(setname): dataset = CorporaDataSet(setname) # topic_word_array = dataset.getWordsInTopicMatrix() # topic_doc_array = dataset.getDocsInTopicMatrix() topic_word_array = dataset.getDocsInTopicMatrix() topic_doc_array = dataset.getWordsInTopicMatrix().T doc_length_array = numpy.full([topic_doc_array.shape[0]],1) vocabulary = dataset.loadVocabulary()[0].keys() print "topic word array shape: ",topic_word_array.shape print "topic doc shape: ",topic_doc_array.shape print "vocabulary: ",len(vocabulary) wordfreqs = mmread(setname + ".mtx").sum(1) word_freq_array = numpy.array(wordfreqs)[:,0] return {topic_word_key:topic_word_array, topic_doc_key:topic_doc_array, doc_length_key:doc_length_array, vocabulary_key:vocabulary, word_freq_key:word_freq_array}
Example 12
def sphankel1(n, kr): """Spherical Hankel (first kind) of order n at kr Parameters ---------- n : array_like Order kr: array_like Argument Returns ------- hn1 : complex float Spherical Hankel function hn (first kind) """ n, kr = scalar_broadcast_match(n, kr) hn1 = _np.full(n.shape, _np.nan, dtype=_np.complex_) kr_nonzero = kr != 0 hn1[kr_nonzero] = _np.sqrt(_np.pi / 2) / _np.lib.scimath.sqrt(kr[kr_nonzero]) * hankel1(n[kr_nonzero] + 0.5, kr[kr_nonzero]) return hn1
Example 13
def sphankel2(n, kr): """Spherical Hankel (second kind) of order n at kr Parameters ---------- n : array_like Order kr: array_like Argument Returns ------- hn2 : complex float Spherical Hankel function hn (second kind) """ n, kr = scalar_broadcast_match(n, kr) hn2 = _np.full(n.shape, _np.nan, dtype=_np.complex_) kr_nonzero = kr != 0 hn2[kr_nonzero] = _np.sqrt(_np.pi / 2) / _np.lib.scimath.sqrt(kr[kr_nonzero]) * hankel2(n[kr_nonzero] + 0.5, kr[kr_nonzero]) return hn2
Example 14
def dsphankel1(n, kr): """Derivative spherical Hankel (first kind) of order n at kr Parameters ---------- n : array_like Order kr: array_like Argument Returns ------- dhn1 : complex float Derivative of spherical Hankel function hn' (second kind) """ n, kr = scalar_broadcast_match(n, kr) dhn1 = _np.full(n.shape, _np.nan, dtype=_np.complex_) kr_nonzero = kr != 0 dhn1[kr_nonzero] = 0.5 * (sphankel1(n[kr_nonzero] - 1, kr[kr_nonzero]) - sphankel1(n[kr_nonzero] + 1, kr[kr_nonzero]) - sphankel1(n[kr_nonzero], kr[kr_nonzero]) / kr[kr_nonzero]) return dhn1
Example 15
def dsphankel2(n, kr): """Derivative spherical Hankel (second kind) of order n at kr Parameters ---------- n : array_like Order kr: array_like Argument Returns ------- dhn2 : complex float Derivative of spherical Hankel function hn' (second kind) """ n, kr = scalar_broadcast_match(n, kr) dhn2 = _np.full(n.shape, _np.nan, dtype=_np.complex_) kr_nonzero = kr != 0 dhn2[kr_nonzero] = 0.5 * (sphankel2(n[kr_nonzero] - 1, kr[kr_nonzero]) - sphankel2(n[kr_nonzero] + 1, kr[kr_nonzero]) - sphankel2(n[kr_nonzero], kr[kr_nonzero]) / kr[kr_nonzero]) return dhn2
Example 16
def test_find_multiple_noisy(self): """ Test finding multiple particles (noisy) """ self.atol = 5 radius = np.random.random() * 15 + 15 generated_image = self.generate_image(radius, 10, noise=0.2) actual_number = len(generated_image.coords) fits = find_disks(generated_image.image, (radius / 2.0, radius * 2.0), maximum=actual_number) _, coords = sort_positions(generated_image.coords, np.array([fits['y'].values, fits['x'].values]).T) if len(fits) == 0: # Nothing found actual = np.repeat([[np.nan, np.nan, np.nan]], actual_number, axis=0) else: actual = fits[['r', 'y', 'x']].values.astype(np.float64) expected = np.array([np.full(actual_number, radius, np.float64), coords[:, 0], coords[:, 1]]).T return np.sqrt(((actual - expected)**2).mean(0)), [0] * 3
Example 17
def test_fit(self): ''' Tests the fit to samples. ''' # Generate random variates size = 100 samples = self.vine.rvs(size) # Fit mixed vine to samples is_continuous = np.full((self.dim), True, dtype=bool) is_continuous[1] = False vine_est = MixedVine.fit(samples, is_continuous) assert_approx_equal(vine_est.root.copulas[0].theta, 0.77490, significant=5) assert_approx_equal(vine_est.root.input_layer.copulas[0].theta, 4.01646, significant=5) assert_approx_equal(vine_est.root.input_layer.copulas[1].theta, 4.56877, significant=5)
Example 18
def _logcdf(self, samples): lower = np.full(2, -np.inf) upper = norm.ppf(samples) limit_flags = np.zeros(2) if upper.shape[0] > 0: def func1d(upper1d): ''' Calculates the multivariate normal cumulative distribution function of a single sample. ''' return mvn.mvndst(lower, upper1d, limit_flags, self.theta)[1] vals = np.apply_along_axis(func1d, -1, upper) else: vals = np.empty((0, )) old_settings = np.seterr(divide='ignore') vals = np.log(vals) np.seterr(**old_settings) vals[np.any(samples == 0.0, axis=1)] = -np.inf vals[samples[:, 0] == 1.0] = np.log(samples[samples[:, 0] == 1.0, 1]) vals[samples[:, 1] == 1.0] = np.log(samples[samples[:, 1] == 1.0, 0]) return vals
Example 19
def test_aggregate_variance(self): result = self.raster_rdd.aggregate_by_cell(Operation.VARIANCE) band = np.array([[ [1, 1.5, 2, 2.5, 3], [1.5, 2, 2.5, 3, 3.5], [2, 2.5, 3, 3.5, 4], [2.5, 3, 3.5, 4, 4.5], [3, 3.5, 4, 4.5, 5]]]) expected = np.array([ ((self.first - band) ** 2) + ((self.second - band) ** 2), ((self.first - band) ** 2) + ((self.second - band) ** 2) ]) expected_2 = np.full((5, 5), -1.0) self.assertTrue((result.lookup(1, 0)[0].cells == expected).all()) self.assertTrue((result.lookup(0, 0)[0].cells == expected_2).all())
Example 20
def test_aggregate_std(self): result = self.raster_rdd.aggregate_by_cell(Operation.STANDARD_DEVIATION) band = np.array([[ [1, 1.5, 2, 2.5, 3], [1.5, 2, 2.5, 3, 3.5], [2, 2.5, 3, 3.5, 4], [2.5, 3, 3.5, 4, 4.5], [3, 3.5, 4, 4.5, 5]]]) expected = np.array([ (((self.first - band) ** 2) + ((self.second - band) ** 2)) ** (1/2), (((self.first - band) ** 2) + ((self.second - band) ** 2)) ** (1/2) ]) expected_2 = np.full((5, 5), -1.0) self.assertTrue((result.lookup(1, 0)[0].cells == expected).all()) self.assertTrue((result.lookup(0, 0)[0].cells == expected_2).all())
Example 21
def show_weather_bydate(self): self.weathdf['gap'] = self.weathdf['time_slotid'].apply(self.find_gap_by_timeslot) by_date = self.weathdf.groupby('time_date') size = len(by_date) col_len = row_len = math.ceil(math.sqrt(size)) count = 1 for name, group in by_date: ax=plt.subplot(row_len, col_len, count) # temp = np.empty(group['time_id'].shape[0]) # temp.fill(2) # ax.plot(group['time_id'], group['gap']/group['gap'].max(), 'r', alpha=0.75) # ax.plot(group['time_id'], group['weather']/group['weather'].max()) ax.bar(group['time_id'], group['weather'], width=1) ax.set_title(name) count = count + 1 # plt.bar(group['time_id'], np.full(group['time_id'].shape[0], 5), width=1) plt.show() return
Example 22
def _retrieve_sample(self, annotation): epsilon = 0.05 high_val = 1 - epsilon low_val = 0 + epsilon coco_image = self._coco.loadImgs(annotation['image_id'])[0] image_path = os.path.join(self._config.data_dir['images'], coco_image['file_name']) image = utils.load_image(image_path) ann_mask = self._coco.annToMask(annotation) mask_categorical = np.full((ann_mask.shape[0], ann_mask.shape[1], self.num_classes()), low_val, dtype=np.float32) mask_categorical[:, :, 0] = high_val # every pixel begins as background class_index = self._cid_to_id[annotation['category_id']] mask_categorical[ann_mask > 0, class_index] = high_val mask_categorical[ann_mask > 0, 0] = low_val # remove background label from pixels of this (non-bg) category return image, mask_categorical
Example 23
def round(self, decimals=0, out=None): """ Return an array rounded a to the given number of decimals. Refer to `numpy.around` for full documentation. See Also -------- numpy.around : equivalent function """ result = self._data.round(decimals=decimals, out=out).view(type(self)) if result.ndim > 0: result._mask = self._mask result._update_from(self) elif self._mask: # Return masked when the scalar is masked result = masked # No explicit output: we're done if out is None: return result if isinstance(out, MaskedArray): out.__setmask__(self._mask) return out
Example 24
def reshape(a, new_shape, order='C'): """ Returns an array containing the same data with a new shape. Refer to `MaskedArray.reshape` for full documentation. See Also -------- MaskedArray.reshape : equivalent function """ # We can't use 'frommethod', it whine about some parameters. Dmmit. try: return a.reshape(new_shape, order=order) except AttributeError: _tmp = narray(a, copy=False).reshape(new_shape, order=order) return _tmp.view(MaskedArray)
Example 25
def dump(a, F): """ Pickle a masked array to a file. This is a wrapper around ``cPickle.dump``. Parameters ---------- a : MaskedArray The array to be pickled. F : str or file-like object The file to pickle `a` to. If a string, the full path to the file. """ if not hasattr(F, 'readline'): F = open(F, 'w') return pickle.dump(a, F)
Example 26
def create_merge_multiple(save_path, creators, shuffle=True): n_sample_total = 0 creator_indices = [] for i, creator in enumerate(creators): creator._read_list() n_sample_total += creator.n_samples creator_indices.append(np.full((creator.n_samples), i, dtype=np.int)) creator_indices = np.concatenate(creator_indices) if shuffle: np.random.shuffle(creator_indices) print('Start creating dataset with {} examples. Output path: {}'.format( n_sample_total, save_path)) writer = tf.python_io.TFRecordWriter(save_path) count = 0 for i in range(n_sample_total): creator = creators[creator_indices[i]] example = creator._create_next_sample() if example is not None: writer.write(example.SerializeToString()) count += 1 if i > 0 and i % 100 == 0: print('Progress %d / %d' % (i, n_sample_total)) print('Done creating %d samples' % count)
Example 27
def list_to_padded_tokens(dialogues, tokenizer): # compute the length of the dialogue seq_length = [len(d) for d in dialogues] # Get dialogue numpy max size batch_size = len(dialogues) max_seq_length = max(seq_length) # Initialize numpy array padded_tokens = np.full((batch_size, max_seq_length), tokenizer.padding_token, dtype=np.int32) # fill the padded array with word_id for i, (one_path, l) in enumerate(zip(dialogues, seq_length)): padded_tokens[i, 0:l] = one_path return padded_tokens, seq_length
Example 28
def __parse_pairs__(self, filepath, delimiter = ',', target_col = 2, column_names = list(), sequence_length = None): assert("target" in column_names) with open(filepath, "r") as f: lines = f.readlines() try: if sequence_length is None: dataframe = pd.read_csv(filepath, sep = delimiter, skip_blank_lines = True, header = None, names = column_names, index_col = False) sequence_length = np.asarray(dataframe[["i", "j"]]).max() except ValueError: return None data = np.full((sequence_length, sequence_length), np.nan, dtype = np.double) np.fill_diagonal(data, Params.DISTANCE_WITH_ITSELF) for line in lines: elements = line.rstrip("\r\n").split(delimiter) i, j, k = int(elements[0]) - 1, int(elements[1]) - 1, float(elements[target_col]) data[i, j] = data[j, i] = k if np.isnan(data).any(): # sequence_length is wrong or the input file has missing pairs warnings.warn("Warning: Pairs of residues are missing from the contacts text file") warnings.warn("Number of missing pairs: %i " % np.isnan(data).sum()) return data
Example 29
def extended_2d_fancy_indexing(arr, sl1, sl2, value_of_nan): new_shape = tuple([sl1.stop - sl1.start, sl2.stop - sl2.start] + list(arr.shape[2:])) result = np.full(new_shape, value_of_nan, dtype = arr.dtype) x_lower = 0 if sl1.start < 0 else sl1.start x_upper = arr.shape[0] if sl1.stop > arr.shape[0] else sl1.stop y_lower = 0 if sl2.start < 0 else sl2.start y_upper = arr.shape[1] if sl2.stop > arr.shape[1] else sl2.stop new_x_lower = max(0, - sl1.stop + (sl1.stop - sl1.start)) new_x_upper = new_x_lower + (x_upper - x_lower) new_y_lower = max(0, - sl2.stop + (sl2.stop - sl2.start)) new_y_upper = new_y_lower + (y_upper - y_lower) if len(result.shape) == 2: result[new_x_lower:new_x_upper, new_y_lower:new_y_upper] = arr[x_lower:x_upper, y_lower:y_upper] elif len(result.shape) == 3: result[new_x_lower:new_x_upper, new_y_lower:new_y_upper, :] = arr[x_lower:x_upper, y_lower:y_upper, :] else: raise WrongTensorShapeError() return result
Example 30
def select_action(self, t, greedy_action_func, action_value=None): a = greedy_action_func() if self.ou_state is None: if self.start_with_mu: self.ou_state = np.full(a.shape, self.mu, dtype=np.float32) else: sigma_stable = (self.sigma / np.sqrt(2 * self.theta - self.theta ** 2)) self.ou_state = np.random.normal( size=a.shape, loc=self.mu, scale=sigma_stable).astype(np.float32) else: self.evolve() noise = self.ou_state self.logger.debug('t:%s noise:%s', t, noise) return a + noise
Example 31
def test_soft_copy_param(self): a = L.Linear(1, 5) b = L.Linear(1, 5) a.W.data[:] = 0.5 b.W.data[:] = 1 # a = (1 - tau) * a + tau * b copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1) np.testing.assert_almost_equal(a.W.data, np.full(a.W.data.shape, 0.55)) np.testing.assert_almost_equal(b.W.data, np.full(b.W.data.shape, 1.0)) copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1) np.testing.assert_almost_equal( a.W.data, np.full(a.W.data.shape, 0.595)) np.testing.assert_almost_equal(b.W.data, np.full(b.W.data.shape, 1.0))
Example 32
def get_next_note_from_note(self, note): """Given a note, uses the model to predict the most probable next note. Args: note: A one-hot encoding of the note. Returns: Next note in the same format. """ with self.graph.as_default(): with tf.variable_scope(self.scope, reuse=True): singleton_lengths = np.full(self.batch_size, 1, dtype=int) input_batch = np.reshape(note, (self.batch_size, 1, rl_tuner_ops.NUM_CLASSES)) softmax, self.state_value = self.session.run( [self.softmax, self.state_tensor], {self.melody_sequence: input_batch, self.initial_state: self.state_value, self.lengths: singleton_lengths}) return self.get_note_from_softmax(softmax)
Example 33
def set_pixels(self, pixels): hsv = np.full((self.X_MAX, self.Y_MAX, 3), 0xFF, dtype=np.uint8) hsv[:, :, self.wave_type] = self.pixels[2] / 0xFFFF * 0xFF if self.wave_type == self.VALUE: hsv[:, :, 1] = 0 if self.darken_mids: hsv[:, :, 2] = np.abs(self.pixels[2] - (0xFFFF >> 1)) / 0xFFFF * 0xFF rgb = color_utils.hsv2rgb(hsv) pixels[:self.X_MAX, :self.Y_MAX] = rgb self.pixels.pop(0) ## # Calculate next frame of explicit finite difference wave #
Example 34
def basic_check(self): # TODO Ghi: check the microstructure model is compatible. # if we want to be strict, only IndependentShpere should be valid, but in pratice any # model of sphere with a radius can make it! if not hasattr(self.layer.microstructure, "radius"): raise SMRTError("Only microstructure_model which defined a `radius` can be used with Rayleigh scattering") # The phase function is inherited from Rayleigh // Don't remove the commented code # def phase(self, m, mhu): # The ke function is inherited from Rayleigh // Don't remove the commented code # def ke(self, mhu): # return np.full(2*len(mhu), self.ks+self.ka) # The effective_permittivity is inherited from Rayleigh // Don't remove the commented code # def effective_permittivity(self): # return self._effective_permittivity
Example 35
def basic_check(self): # TODO Ghi: check the microstructure model is compatible. # if we want to be strict, only IndependentShpere should be valid, but in pratice any # model of sphere with a radius can make it! if not hasattr(self.layer.microstructure, "radius"): raise SMRTError("Only microstructure_model which defined a `radius` can be used with Rayleigh scattering") # The phase function is inherited from Rayleigh // Don't remove the commented code # def phase(self, m, mhu): # The ke function is inherited from Rayleigh // Don't remove the commented code # def ke(self, mhu): # return np.full(2*len(mhu), self.ks+self.ka) # The effective_permittivity is inherited from Rayleigh // Don't remove the commented code # def effective_permittivity(self): # return self._effective_permittivity
Example 36
def basic_check(self): # TODO Ghi: check the microstructure model is compatible. # if we want to be strict, only IndependentShpere should be valid, but in pratice any # model of sphere with a radius can make it! if not hasattr(self.layer.microstructure, "radius"): raise SMRTError("Only microstructure_model which defined a `radius` can be used with Rayleigh scattering") # The phase function is inherited from Rayleigh // Don't remove the commented code # def phase(self, m, mhu): # The ke function is inherited from Rayleigh // Don't remove the commented code # def ke(self, mhu): # return np.full(2*len(mhu), self.ks+self.ka) # The effective_permittivity is inherited from Rayleigh // Don't remove the commented code # def effective_permittivity(self): # return self._effective_permittivity
Example 37
def test_allreduce_hint(hetr_device, config): if hetr_device == 'gpu': if 'gpu' not in ngt.transformer_choices(): pytest.skip("GPUTransformer not available") input = config['input'] device_id = config['device_id'] axis_A = ng.make_axis(length=4, name='axis_A') parallel_axis = ng.make_axis(name='axis_parallel', length=16) with ng.metadata(device=hetr_device, device_id=device_id, parallel=parallel_axis): var_A = ng.variable(axes=[axis_A], initial_value=UniformInit(1, 1)) var_B = ng.variable(axes=[axis_A], initial_value=UniformInit(input, input)) var_B.metadata['reduce_func'] = 'sum' var_B_mean = var_B / len(device_id) var_minus = (var_A - var_B_mean) with closing(ngt.make_transformer_factory('hetr', device=hetr_device)()) as hetr: out_comp = hetr.computation(var_minus) result = out_comp() np_result = np.full((axis_A.length), config['expected_result'], np.float32) np.testing.assert_array_equal(result, np_result)
Example 38
def test_fixed_lr(iter_buf, max_iter, base_lr): # set up name = 'fixed' params = {'name': name, 'max_iter': max_iter, 'base_lr': base_lr} # execute naive_lr = np.full(max_iter, base_lr) lr_op = lr_policies[name]['obj'](params)(iter_buf) with ExecutorFactory() as ex: compute_lr = ex.executor(lr_op, iter_buf) ng_lr = [compute_lr(i).item(0) for i in range(max_iter)] # compare ng.testing.assert_allclose(ng_lr, naive_lr, atol=1e-4, rtol=1e-3)
Example 39
def plot_spiker(record, spike_trains_target, neuron_index=0): """Plot spikeraster and target timings for given neuron index""" plt.ioff() spike_trains = [np.array(i.spiketrains[neuron_index]) for i in record.segments] n_segments = record.size['segments'] plt.figure() for i in xrange(len(spike_trains)): plt.plot(spike_trains[i], np.full(len(spike_trains[i]), i + 1, dtype=np.int), 'k.') target_timings = spike_trains_target[neuron_index].value plt.plot(target_timings, np.full(len(target_timings), 1.025 * n_segments), 'kx', markersize=8, markeredgewidth=2) plt.xlim((0., np.float(record.segments[0].t_stop))) plt.ylim((0, np.int(1.05 * n_segments))) plt.xlabel('Time (ms)') plt.ylabel('Trials') plt.title('Output neuron {}'.format(neuron_index)) plt.show() plt.ion()
Example 40
def __init__(self, index): self.name = 'Walkington(tetrahedron, {})'.format(index) if index == 'p5': self.degree = 5 self.weights = 6 * numpy.concatenate([ numpy.full(4, 0.018781320953002641800), numpy.full(4, 0.012248840519393658257), numpy.full(6, 0.0070910034628469110730), ]) self.bary = numpy.concatenate([ _xi1(0.31088591926330060980), _xi1(0.092735250310891226402), _xi11(0.045503704125649649492), ]) self.points = self.bary[:, 1:] return # Default: scheme from general simplex w = walkington.Walkington(3, index) self.weights = w.weights self.bary = w.bary self.points = w.points self.degree = w.degree return
Example 41
def _gen5_3(n): '''Spherical product Lobatto formula. ''' data = [] s = sqrt(n+3) for k in range(1, n+1): rk = sqrt((k+2) * (n+3)) Bk = fr(2**(k-n) * (n+1), (k+1) * (k+2) * (n+3)) arr = [rk] + (n-k) * [s] data += [ (Bk, pm_array0(n, arr, range(k-1, n))) ] B0 = 1 - sum([item[0]*len(item[1]) for item in data]) data += [ (B0, numpy.full((1, n), 0)) ] return 5, data
Example 42
def setup_rw(params): pore = get_pore(**params) rw = RandomWalk(pore, **params) rw.add_wall_binding(t=params.t_bind, p=params.p_bind, eps=params.eps_bind) # define non-standard stopping criteria Tmax = params.Tmax Rmax = params.Rmax def success(self, r, z): return self.in_channel(r, z) & (z <= params.zstop) def fail(self, r, z): if self.t > Tmax: return np.full(r.shape, True, dtype=bool) toolong = (self.times[self.alive] + self.bind_times[self.alive]) > 5e6 toofar = r**2 + z**2 > Rmax**2 return toolong | toofar rw.set_stopping_criteria(success, fail) return rw ########### STREAMLINE PLOT ###########
Example 43
def move_ellipses(self, coll, cyl=False): xz = self.x[:, ::2] if not cyl else np.column_stack( [np.sqrt(np.sum(self.x[:, :2]**2, 1)), self.x[:, 2]]) coll.set_offsets(xz) #inside = self.inside_wall() #margin = np.nonzero(self.alive)[0][self.inside_wall(2.)] colors = np.full((self.N,), "b", dtype=str) #colors[margin] = "r" colors[self.success] = "k" colors[self.fail] = "k" colors[self.alive & ~self.can_bind] = "r" #colors = [("r" if inside[i] else "g") if margin[i] else "b" for i in range(self.N)] coll.set_facecolors(colors) #y = self.x[:, 1] #d = 50. #sizes = self.params.rMolecule*(1. + y/d) #coll.set(widths=sizes, heights=sizes)
Example 44
def sample_scalar(self, shape, a): AMAX = 30 if a > AMAX: return np.random.poisson(a, shape) k = 1 K = np.full(shape, k) s = a/np.expm1(a) S = s U = np.random.random(shape) new = S < U while np.any(new): k += 1 K[new] = k s = s*a/float(k) S = S + s new = S < U return K
Example 45
def values(cls, dataset, dimension, expanded, flat): dimension = dataset.get_dimension(dimension) idx = dataset.get_dimension_index(dimension) data = dataset.data if idx not in [0, 1] and not expanded: return data[dimension.name].values values = [] columns = list(data.columns) arr = geom_to_array(data.geometry.iloc[0]) ds = dataset.clone(arr, datatype=cls.subtypes, vdims=[]) for i, d in enumerate(data.geometry): arr = geom_to_array(d) if idx in [0, 1]: ds.data = arr values.append(ds.interface.values(ds, dimension)) else: arr = np.full(len(arr), data.iloc[i, columns.index(dimension.name)]) values.append(arr) values.append([np.NaN]) return np.concatenate(values[:-1]) if values else np.array([])
Example 46
def create_validTest_data(self): for i in range(len(self.validTestQ)): qId = self.validTestQ[i] item = self.corpus.QAnswers[qId].itemId question = self.corpus.QAnswers[qId].qFeature answer_list = [qId, self.validTestNa[i]] Pairwise = self.create_dense_pairwise(item, qId) Question = self.create_sparse_one(qFeature = question) Answer = self.create_sparse_one(answer_list = answer_list) Review = self.Review[item] TermtoTermR = self.create_sparse_two(item, qFeature = question) TermtoTermP = self.create_sparse_two(item, answer_list = answer_list) Question_I = (Question[0], Question[1] if Question[1].size == 1 and Question[1][0] == 0 else np.full((Question[1].size), 1.0/np.sqrt(Question[1].size)), Question[2]) Answer_I = (Answer[0], Answer[1] if Answer[1].size == 1 and Answer[1][0] == 0 else np.full((Answer[1].size), 1.0/np.sqrt(Answer[1].size)), Answer[2]) Review_I = (Review[0], np.full((Review[1].size), 1.0/np.sqrt(Review[1].size)), Review[2]) self.validTestM.append((Pairwise, Question, Answer, Review, TermtoTermR, TermtoTermP, Question_I, Answer_I, Review_I))
Example 47
def setUp(self): super(BridgeTest, self).setUp() self.batch_size = 4 self.encoder_cell = tf.contrib.rnn.MultiRNNCell( [tf.contrib.rnn.GRUCell(4), tf.contrib.rnn.GRUCell(8)]) self.decoder_cell = tf.contrib.rnn.MultiRNNCell( [tf.contrib.rnn.LSTMCell(16), tf.contrib.rnn.GRUCell(8)]) final_encoder_state = nest.map_structure( lambda x: tf.convert_to_tensor( value=np.random.randn(self.batch_size, x), dtype=tf.float32), self.encoder_cell.state_size) self.encoder_outputs = EncoderOutput( outputs=tf.convert_to_tensor( value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32), attention_values=tf.convert_to_tensor( value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32), attention_values_length=np.full([self.batch_size], 10), final_state=final_encoder_state)
Example 48
def dominant_sets(graph_mat, max_k=0, tol=1e-5, max_iter=1000): graph_cardinality = graph_mat.shape[0] if max_k == 0: max_k = graph_cardinality clusters = np.zeros(graph_cardinality) already_clustered = np.full(graph_cardinality, False, dtype=np.bool) for k in range(max_k): if graph_cardinality - already_clustered.sum() <= ceil(0.05 * graph_cardinality): break # 1000 is added to obtain more similar values when x is normalized # x = np.random.random_sample(graph_cardinality) + 1000.0 x = np.full(graph_cardinality, 1.0) x[already_clustered] = 0.0 x /= x.sum() y = replicator(graph_mat, x, np.where(~already_clustered)[0], tol, max_iter) cluster = np.where(y >= 1.0 / (graph_cardinality * 1.5))[0] already_clustered[cluster] = True clusters[cluster] = k clusters[~already_clustered] = k return clusters
Example 49
def _search_ann(self, search_keys, dnd_keys, update_LRU_order): batch_indices = [] for act, ann in self.anns.items(): # These are the indices we get back from ANN search indices = ann.query(search_keys) log.debug("ANN indices for action {}: {}".format(act, indices)) # Create numpy array with full of corresponding action vector index action_indices = np.full(indices.shape, self.action_vector.index(act)) log.debug("Action indices for action {}: {}".format(act, action_indices)) # Riffle two arrays tf_indices = self._riffle_arrays(action_indices, indices) batch_indices.append(tf_indices) # Very important part: Modify LRU Order here # Doesn't work without tabular update of course! if update_LRU_order == 1: _ = [self.tf_index__state_hash[act][i] for i in indices.ravel()] np_batch = np.asarray(batch_indices) log.debug("Batch update indices: {}".format(np_batch)) # Reshaping to gather_nd compatible format final_indices = np.asarray([np_batch[:, j, :, :] for j in range(np_batch.shape[1])], dtype=np.int32) return final_indices
Example 50
def contains(self, other): if isinstance(other, Point): x = other._x elif isinstance(other, np.ndarray): x = other elif isinstance(other, Polygon): x = _points_to_array(other.vertices) return np.all(self.contains(x)) else: raise TypeError("P must be point or ndarray") # keep track of whether each point is contained in a face bools = np.full(x.shape[0], False, dtype=bool) for f in self.faces: bools = np.logical_or(bools, f.contains(x)) return bools