Python numpy.matmul() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def svgd_kernel(self, h = -1):
        sq_dist = pdist(self.theta)
        pairwise_dists = squareform(sq_dist)**2
        if h < 0: # if h < 0, using median trick
            h = np.median(pairwise_dists)  
            h = np.sqrt(0.5 * h / np.log(self.theta.shape[0]+1))

        # compute the rbf kernel
        
        Kxy = np.exp( -pairwise_dists / h**2 / 2)

        dxkxy = -np.matmul(Kxy, self.theta)
        sumkxy = np.sum(Kxy, axis=1)
        for i in range(self.theta.shape[1]):
            dxkxy[:, i] = dxkxy[:,i] + np.multiply(self.theta[:,i],sumkxy)
        dxkxy = dxkxy / (h**2)
        return (Kxy, dxkxy) 

Example 2

def KeyGen(**kwargs):
	'''
	Appendix B of BLISS paper
	m_bar = m + n

	o/p:	
	A: Public Key n x m' numpy array
	S: Secret Key m'x n numpy array
	'''
	q, n, m, alpha = kwargs['q'], kwargs['n'], kwargs['m'], kwargs['alpha']
	Aq_bar = util.crypt_secure_matrix(-(q-1)/2, (q-1)/2, n, m)
	S_bar = util.crypt_secure_matrix(-(2)**alpha, (2)**alpha, m, n) # alpha is small enough, we need not reduce (modq)
	S = np.vstack((S_bar, np.eye(n, dtype = int))) # dimension is m_bar x n, Elements are in Z mod(2q)
	A = np.hstack((2*Aq_bar, q * np.eye(n, dtype = int) - 2*np.matmul(Aq_bar,S_bar))) # dimension is n x m_bar , Elements are in Z mod(2q)
	#return util.matrix_to_Zq(A, 2*q), S, Aq_bar, S_bar
	return util.matrix_to_Zq(A, 2*q), S 

Example 3

def test():
	# Classical SIS parameters
	n, m, alpha, q = 128, 872, 1, 114356107
	kappa = 20
	
	#Discrete Gaussian Parameters
	sd = 300
	eta = 1.2

	A, S = KeyGen(q = q,n = n,m = m,alpha = alpha)
	#print np.array(np.matmul(A,S) - q*np.eye(n),dtype=float)/(2*q) #to test AS = q mod(2q)
	z, c = Sign(msg = "Hello Bob",A = A,S = S,m = m,n = n,sd = sd,q = q,M = 3.0,kappa = kappa)
	print z
	print c
	print Verify(msg = "Hello Bob", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
	print Verify(msg = "Hello Robert", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
	print Verify(msg = "Hello Roberto", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
	print Verify(msg = "Hola Roberto", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa) 

Example 4

def Verify(**kwargs):
	'''
		Verification for the signature
		i/p:
		msg: the string sent by the sender
		(z,c): vectors in Zq, the signature
		A  : numpy array, Verification Key dimension nxm
		T : the matrix AS mod q ,it is used in the Verification of the signature
	'''
	msg, z, c, A, T, sd, eta, m, k, q = kwargs['msg'], kwargs['z'], kwargs['c'], kwargs['A'], kwargs['T'], kwargs['sd'], kwargs['eta'], kwargs['m'], kwargs['k'], kwargs['q']
	norm_bound = eta * sd * np.sqrt(m)
	# checks for norm of z being small and that H(Az-Tc mod q,msg) hashes to c
	vec = util.vector_to_Zq(np.array(np.matmul(A,z) - np.matmul(T,c)), q)
	hashedList = util.hash_to_baseb(vec, msg, 3, k)
	print hashedList, c 			
	if np.sqrt(z.dot(z)) <= norm_bound and np.array_equal(c, hashedList):
		return True
	else:
		return False 

Example 5

def KeyGen(n, m, k, d, q):
	'''
		input:
		q : polynomial size prime number
		n, m, k : dimensions specifiers
		d : SIS parameter, hardest instances are where d ~ q^(n/m)

		output:
		Signing Key S :  Matrix of dimension mxk with coefficients in [-d.d]
		Verification Key A : Matrix of dimension nxm with coefficients from [-(q-1)/2,(q-1)/2]
		T : the matrix AS ,it is used in the Verification of the signature

	'''
	S = crypt_secure_matrix(d, m, k)
	A = crypt_secure_matrix((q-1)/2, n, m)
	T = np.matmul(A, S)
	return S, A, T 

Example 6

def transfer_color(content, style):
    import scipy.linalg as sl
    # Mean and covariance of content
    content_mean = np.mean(content, axis = (0, 1))
    content_diff = content - content_mean
    content_diff = np.reshape(content_diff, (-1, content_diff.shape[2]))
    content_covariance = np.matmul(content_diff.T, content_diff) / (content_diff.shape[0])

    # Mean and covariance of style
    style_mean = np.mean(style, axis = (0, 1))
    style_diff = style - style_mean
    style_diff = np.reshape(style_diff, (-1, style_diff.shape[2]))
    style_covariance = np.matmul(style_diff.T, style_diff) / (style_diff.shape[0])

    # Calculate A and b
    A = np.matmul(sl.sqrtm(content_covariance), sl.inv(sl.sqrtm(style_covariance)))
    b = content_mean - np.matmul(A, style_mean)

    # Construct new style
    new_style = np.reshape(style, (-1, style.shape[2])).T
    new_style = np.matmul(A, new_style).T
    new_style = np.reshape(new_style, style.shape)
    new_style = new_style + b

    return new_style 

Example 7

def svgd_kernel(self, theta, h = -1):
        sq_dist = pdist(theta)
        pairwise_dists = squareform(sq_dist)**2
        if h < 0: # if h < 0, using median trick
            h = np.median(pairwise_dists)  
            h = np.sqrt(0.5 * h / np.log(theta.shape[0]+1))

        # compute the rbf kernel
        Kxy = np.exp( -pairwise_dists / h**2 / 2)

        dxkxy = -np.matmul(Kxy, theta)
        sumkxy = np.sum(Kxy, axis=1)
        for i in range(theta.shape[1]):
            dxkxy[:, i] = dxkxy[:,i] + np.multiply(theta[:,i],sumkxy)
        dxkxy = dxkxy / (h**2)
        return (Kxy, dxkxy) 

Example 8

def run_random_sim(sim, L):
    """
    Run *L* simulations of the state space model specified by *sim*
    (see :func:`setup_random_sim`). Each simulation is added to *sim*
    index by an integer identifier.
    """
    sim['L'] = L
    for l in range(L):
        sim[l] = defaultdict(list)
        x_i = sim['mu'] + NP.matmul(sim['PI_sqrt'], NP.random.randn(sim['N']))
        for i in range(sim['I']):
            sim[l]['x'].append(x_i)
            # measurement
            v_i = NP.matmul(sim['R_sqrt'][i], NP.random.randn(sim['M']))
            sim[l]['y'].append(NP.matmul(sim['H'][i], sim[l]['x'][i]) + v_i)
            # time update
            u_i = NP.matmul(sim['Q_sqrt'][i], NP.random.randn(sim['N']))
            x_i = NP.matmul(sim['F'][i], x_i) + u_i
    return sim 

Example 9

def sqrt_kf_sim(sim):
    """
    Process each simulation trial generated with
    :func:`setup_random_test` with a Kalman filter and return the
    posterior state estimates and error covariances.
    """
    post = defaultdict(dict)
    for l in range(sim['L']):
        x_hat_l, P_sqrt_l = sqrt_kalman_filter(sim[l]['y'],
                                               sim['H'],
                                               sim['R_sqrt'],
                                               sim['F'],
                                               sim['Q_sqrt'],
                                               sim['mu'],
                                               sim['PI_sqrt'])
        post[l]['x_hat'] = x_hat_l
        if l == 0:
            post['P'] = [NP.matmul(x, x.T) for x in P_sqrt_l]
        post[l]['error'] = []
        for x_i, x_hat_i in izip(sim[l]['x'], post[l]['x_hat']):
            post[l]['error'].append(x_hat_i - x_i)
    return post 

Example 10

def sqrt_kf_tu(x_hat_posterior,
               P_sqrt_posterior,
               F_i,
               Q_sqrt_i,
               z_i=None):
    """
    Square root Kalman filter time update. Given the following:
    - *x_hat_posterior*: posterior state estimate (N)
    - *P_sqrt_posterior*: posterior error covariance square root (NxN)
    - *F_i*: time update operator (NxN)
    - *Q_sqrt_i*: time update noise covariance square root (NxN)
    - *z_i*: optional) systematic time update input (N)

    Return the tuple containing the one time step prediction of the
    state and the square root of the error covariance.
    """
    N, _ = F_i.shape
    x_hat_prior = NP.matmul(F_i, x_hat_posterior)
    if z_i is not None:
        x_hat_prior += z_i
    A_T = NP.block([NP.matmul(F_i, P_sqrt_posterior), Q_sqrt_i])
    R_T = NP.linalg.qr(A_T.T, mode='r')
    P_sqrt_prior = R_T.T[:, :N]
    return x_hat_prior, P_sqrt_prior 

Example 11

def rotate_ascii_stl(self, rotation_matrix, content, filename):
        """Rotate the mesh array and save as ASCII STL."""
        mesh = np.array(content, dtype=np.float64)
        
        # prefix area vector, if not already done (e.g. in STL format)
        if len(mesh[0]) == 3:
            row_number = int(len(content)/3)
            mesh = mesh.reshape(row_number, 3, 3)
        
        # upgrade numpy with: "pip install numpy --upgrade"
        rotated_content = np.matmul(mesh, rotation_matrix)

        v0 = rotated_content[:, 0, :]
        v1 = rotated_content[:, 1, :]
        v2 = rotated_content[:, 2, :]
        normals = np.cross(np.subtract(v1, v0), np.subtract(v2, v0)) \
            .reshape(int(len(rotated_content)), 1, 3)
        rotated_content = np.hstack((normals, rotated_content))

        tweaked = list("solid %s" % filename)
        tweaked += list(map(self.write_facett, list(rotated_content)))
        tweaked.append("\nendsolid %s\n" % filename)
        tweaked = "".join(tweaked)
        
        return tweaked 

Example 12

def test_exceptions(self):
        dims = [
            ((1,), (2,)),            # mismatched vector vector
            ((2, 1,), (2,)),         # mismatched matrix vector
            ((2,), (1, 2)),          # mismatched vector matrix
            ((1, 2), (3, 1)),        # mismatched matrix matrix
            ((1,), ()),              # vector scalar
            ((), (1)),               # scalar vector
            ((1, 1), ()),            # matrix scalar
            ((), (1, 1)),            # scalar matrix
            ((2, 2, 1), (3, 1, 2)),  # cannot broadcast
            ]

        for dt, (dm1, dm2) in itertools.product(self.types, dims):
            a = np.ones(dm1, dtype=dt)
            b = np.ones(dm2, dtype=dt)
            assert_raises(ValueError, self.matmul, a, b) 

Example 13

def test_shapes(self):
        dims = [
            ((1, 1), (2, 1, 1)),     # broadcast first argument
            ((2, 1, 1), (1, 1)),     # broadcast second argument
            ((2, 1, 1), (2, 1, 1)),  # matrix stack sizes match
            ]

        for dt, (dm1, dm2) in itertools.product(self.types, dims):
            a = np.ones(dm1, dtype=dt)
            b = np.ones(dm2, dtype=dt)
            res = self.matmul(a, b)
            assert_(res.shape == (2, 1, 1))

        # vector vector returns scalars.
        for dt in self.types:
            a = np.ones((2,), dtype=dt)
            b = np.ones((2,), dtype=dt)
            c = self.matmul(a, b)
            assert_(np.array(c).shape == ()) 

Example 14

def test_numpy_ufunc_override(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        class A(np.ndarray):
            def __new__(cls, *args, **kwargs):
                return np.array(*args, **kwargs).view(cls)

            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return "A"

        class B(np.ndarray):
            def __new__(cls, *args, **kwargs):
                return np.array(*args, **kwargs).view(cls)

            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return NotImplemented

        a = A([1, 2])
        b = B([1, 2])
        c = np.ones(2)
        assert_equal(self.matmul(a, b), "A")
        assert_equal(self.matmul(b, a), "A")
        assert_raises(TypeError, self.matmul, b, c) 

Example 15

def get_symmetry_permutation(self):
        """
        This a object function to get the permutation group operators.
        Represented as a table.
        """
        sym_perm = []
        numbers = [i for i in range(self.num_count)]
        sym_mat = spglib.get_symmetry(self._spg_cell, symprec=self.symprec)
        ops = [(r, t) for r, t in zip(sym_mat['rotations'],
                                      sym_mat['translations'])]
        for r, t in ops:
            pos_new = np.transpose(np.matmul(r, self._positions.T)) + t
            perm = self._get_new_id_seq(pos_new, numbers)
            sym_perm.append(perm)

        return sym_perm 

Example 16

def supercell(self, scale_mat):
        """
        Get the supercell of the origin gcell
        scale_mat is similar as H matrix in superlattice generator
        """
        # return self.__class__(...)
        sarr_lat = np.matmul(scale_mat, self.lattice)
        # coor_conv_pos = np.matmul(self.positions, self.lattice)
        # o_conv_pos = np.matmul(coor_conv_pos, np.linalg.inv(scale_mat))
        o_conv_pos = np.matmul(self.positions, np.linalg.inv(scale_mat))
        o_pos = self.get_frac_from_mat(scale_mat)

        l_of_positions = [i for i in map(lambda x: x+o_pos, list(o_conv_pos))]
        pos = np.concatenate(l_of_positions, axis=0)

        n = scale_mat.diagonal().prod()
        numbers = np.repeat(self.numbers, n)

        return self.__class__(sarr_lat, pos, numbers) 

Example 17

def ams_extractor(x, sr, win_len, shift_len, order):
    from scipy.signal import hilbert
    envelope = np.abs(hilbert(x))
    for i in range(order-1):
        envelope = np.abs(hilbert(envelope))
    envelope = envelope * 1./3.
    frames = (len(envelope) - win_len) // shift_len
    hanning_window = np.hanning(win_len)
    ams_feature = np.zeros(shape=(15, frames))
    wts = cal_triangle_window(0, sr//2, win_len, 15, 15.6, 400)
    for i in range(frames):
        one_frame = x[i*shift_len:i*shift_len+win_len]
        one_frame = one_frame * hanning_window
        frame_fft = np.abs(np.fft.fft(one_frame, win_len))
        ams_feature[:,i] = np.matmul(wts, frame_fft)
    return ams_feature 

Example 18

def ams_extractor(x, sr, win_len, shift_len, order=1, decimate_coef=1./4.):
    from scipy.signal import hilbert
    envelope = np.abs(hilbert(x))
    for i in range(order-1):
        envelope = np.abs(hilbert(envelope))
    envelope = envelope * decimate_coef
    frames = (len(envelope) - win_len) // shift_len
    hanning_window = np.hanning(win_len)
    ams_feature = np.zeros(shape=(15, frames))
    wts = cal_triangle_window(0, sr//2, win_len, 15, 15.6, 400)
    for i in range(frames):
        one_frame = x[i*shift_len:i*shift_len+win_len]
        one_frame = one_frame * hanning_window
        frame_fft = np.abs(np.fft.fft(one_frame, win_len))
        ams_feature[:,i] = np.matmul(wts, frame_fft)
    return ams_feature 

Example 19

def unknown_feature_extractor(x, sr, win_len, shift_len, barks, inner_win, inner_shift, win_type, method_version):
    x_spectrum = stft_extractor(x, win_len, shift_len, win_type)
    coef = get_fft_bark_mat(sr, win_len, barks, 20, sr//2)
    bark_spect = np.matmul(coef, x_spectrum)
    ams = np.zeros((barks, inner_win//2+1, (bark_spect.shape[1] - inner_win)//inner_shift))
    for i in range(barks):
        channel_stft = stft_extractor(bark_spect[i, :], inner_win, inner_shift, 'hanning')
        if method_version == 'v1':
            ams[i, :, :] = 20 * np.log(np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift]))
        elif method_version == 'v2':
            channel_amplitude = np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = np.angle(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = channel_angle - (np.floor(channel_angle / (2.*np.pi)) * (2.*np.pi))
            ams[i, :, :] = np.power(channel_amplitude, 1./3.) * channel_angle
        else:
            ams[i, :, :] = np.abs(channel_stft)
    return ams 

Example 20

def ams_extractor(x, sr, win_len, shift_len, barks, inner_win, inner_shift, win_type, method_version):
    x_spectrum = stft_extractor(x, win_len, shift_len, win_type)
    coef = get_fft_bark_mat(sr, win_len, barks, 20, sr//2)
    bark_spect = np.matmul(coef, x_spectrum)
    ams = np.zeros((barks, inner_win//2+1, (bark_spect.shape[1] - inner_win)//inner_shift))
    for i in range(barks):
        channel_stft = stft_extractor(bark_spect[i, :], inner_win, inner_shift, 'hanning')
        if method_version == 'v1':
            ams[i, :, :] = 20 * np.log(np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift]))
        elif method_version == 'v2':
            channel_amplitude = np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = np.angle(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = channel_angle - (np.floor(channel_angle / (2.*np.pi)) * (2.*np.pi))
            ams[i, :, :] = np.power(channel_amplitude, 1./3.) * channel_angle
        else:
            ams[i, :, :] = np.abs(channel_stft)
    return ams 

Example 21

def run_test_matmul_aa_ci8_shape(self, shape, transpose=False):
        # **TODO: This currently never triggers the transpose path in the backend
        shape_complex = shape[:-1] + (shape[-1] * 2,)
        # Note: The xGPU-like correlation kernel does not support input values of -128 (only [-127:127])
        a8 = ((np.random.random(size=shape_complex) * 2 - 1) * 127).astype(np.int8)
        a_gold = a8.astype(np.float32).view(np.complex64)
        if transpose:
            a_gold = H(a_gold)
        # Note: np.matmul seems to be slow and inaccurate when there are batch dims
        c_gold = np.matmul(a_gold, H(a_gold))
        triu = np.triu_indices(shape[-2] if not transpose else shape[-1], 1)
        c_gold[..., triu[0], triu[1]] = 0
        a = a8.view(bf.DataType.ci8)
        a = bf.asarray(a, space='cuda')
        if transpose:
            a = H(a)
        c = bf.zeros_like(c_gold, space='cuda')
        self.linalg.matmul(1, a, None, 0, c)
        c = c.copy('system')
        np.testing.assert_allclose(c, c_gold, RTOL, ATOL) 

Example 22

def run_test_matmul_aa_dtype_shape(self, shape, dtype, axes=None, conj=False):
        a = ((np.random.random(size=shape)) * 127).astype(dtype)
        if axes is None:
            axes = range(len(shape))
        aa = a.transpose(axes)
        if conj:
            aa = aa.conj()
        c_gold = np.matmul(aa, H(aa))
        triu = np.triu_indices(shape[axes[-2]], 1)
        c_gold[..., triu[0], triu[1]] = 0
        a = bf.asarray(a, space='cuda')
        aa = a.transpose(axes)
        if conj:
            aa = aa.conj()
        c = bf.zeros_like(c_gold, space='cuda')
        self.linalg.matmul(1, aa, None, 0, c)
        c = c.copy('system')
        np.testing.assert_allclose(c, c_gold, RTOL, ATOL) 

Example 23

def run_test_matmul_ab_ci8_shape(self, shape, k, transpose=False):
        ashape_complex = shape[:-2] + (shape[-2], k * 2)
        bshape_complex = shape[:-2] + (k, shape[-1] * 2)
        a8 = (np.random.random(size=ashape_complex) * 255).astype(np.int8)
        b8 = (np.random.random(size=bshape_complex) * 255).astype(np.int8)
        a_gold = a8.astype(np.float32).view(np.complex64)
        b_gold = b8.astype(np.float32).view(np.complex64)
        if transpose:
            a_gold, b_gold = H(b_gold), H(a_gold)
        c_gold = np.matmul(a_gold, b_gold)
        a = a8.view(bf.DataType.ci8)
        b = b8.view(bf.DataType.ci8)
        a = bf.asarray(a, space='cuda')
        b = bf.asarray(b, space='cuda')
        if transpose:
            a, b = H(b), H(a)
        c = bf.zeros_like(c_gold, space='cuda')
        self.linalg.matmul(1, a, b, 0, c)
        c = c.copy('system')
        np.testing.assert_allclose(c, c_gold, RTOL, ATOL) 

Example 24

def run_benchmark_matmul_aa_correlator_kernel(self, ntime, nstand, nchan):
        x_shape = (ntime, nchan, nstand*2)
        perm = [1,0,2]
        x8 = ((np.random.random(size=x_shape+(2,))*2-1)*127).astype(np.int8)
        x = x8.astype(np.float32).view(np.complex64).reshape(x_shape)
        x = x.transpose(perm)
        b_gold = np.matmul(H(x[:,[0],:]), x[:,[0],:])
        triu = np.triu_indices(x_shape[-1], 1)
        b_gold[..., triu[0], triu[1]] = 0
        x = x8.view(bf.DataType.ci8).reshape(x_shape)
        x = bf.asarray(x, space='cuda')
        x = x.transpose(perm)
        b = bf.zeros_like(b_gold, space='cuda')
        bf.device.stream_synchronize();
        t0 = time.time()
        nrep = 200
        for _ in xrange(nrep):
            self.linalg.matmul(1, None, x, 0, b)
        bf.device.stream_synchronize();
        dt = time.time() - t0
        nflop = nrep * nchan * ntime * nstand*(nstand+1)/2 * 2*2 * 8
        print nstand, '\t', nflop / dt / 1e9, 'GFLOP/s'
        print '\t\t', nrep*ntime*nchan / dt / 1e6, 'MHz' 

Example 25

def select_negtive(self, i_feat, s_feat, sess, topN=50):
	'''
	Select the triplets with the largest losses \n
	return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
	'''
	feed_dict = {self.image_feat: i_feat, self.sentence_feat:s_feat}
	i_embed, s_embed = sess.run([self.image_fc2, self.sentence_fc2], feed_dict=feed_dict)
	S = np.matmul(i_embed, s_embed.T)
	i_feat_pos = i_feat.repeat(topN, axis=0)
	s_feat_pos = s_feat.repeat(topN, axis=0)
	N = S.shape[0]
	np.fill_diagonal(S, -2*np.ones(N))
	neg_s_idx = S.argsort(axis=1)[:, -topN:]
	neg_i_idx = S.argsort(axis=0)[-topN:, :]
	s_feat_neg = s_feat[neg_s_idx.flatten('C')]
	i_feat_neg = i_feat[neg_i_idx.flatten('F')]
	return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg 

Example 26

def top_K_loss(self, sentence, image, K=30, margin=0.5):
	sim_matrix = tf.matmul(sentence, image, transpose_b=True)
	s_square = tf.reduce_sum(tf.square(sentence), axis=1)
	im_square = tf.reduce_sum(tf.square(image), axis=1)
	d = tf.reshape(s_square,[-1,1]) - 2 * sim_matrix + tf.reshape(im_square, [1, -1])
	positive = tf.stack([tf.matrix_diag_part(d)] * K, axis=1)
	length = tf.shape(d)[-1]
	d = tf.matrix_set_diag(d, 8 * tf.ones([length]))
	sen_loss_K ,_ = tf.nn.top_k(-1.0 * d, K, sorted=False) # note: this is negative value
	im_loss_K,_ = tf.nn.top_k(tf.transpose(-1.0 * d), K, sorted=False) # note: this is negative value
	sentence_center_loss = tf.nn.relu(positive + sen_loss_K + margin)
	image_center_loss = tf.nn.relu(positive + im_loss_K + margin)
	self.d_neg = (sen_loss_K + im_loss_K)/-2.0
	self.d_pos = positive
	self.endpoint['debug/im_loss_topK'] = -1.0 * im_loss_K
	self.endpoint['debug/sen_loss_topK'] = -1.0 * sen_loss_K 
	self.endpoint['debug/d_Matrix'] = d
	self.endpoint['debug/positive'] = positive
	self.endpoint['debug/s_center_loss'] = sentence_center_loss
	self.endpoint['debug/i_center_loss'] = image_center_loss
	self.endpoint['debug/S'] = sim_matrix
	self.endpoint['debug/sentence_square'] = s_square
	self.endpoint['debug/image_square'] = im_square
	return tf.reduce_sum(sentence_center_loss), tf.reduce_sum(image_center_loss) 

Example 27

def select_negtive(self, i_feat, s_feat, sess, topN=50):
	'''
	Select the triplets with the largest losses \n
	return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
	'''
	feed_dict = {self.image_feat: i_feat, self.sentence_feat:s_feat}
	i_embed, s_embed = sess.run([self.image_fc2, self.sentence_fc2], feed_dict=feed_dict)
	S = np.matmul(i_embed, s_embed.T)
	i_feat_pos = i_feat.repeat(topN, axis=0)
	s_feat_pos = s_feat.repeat(topN, axis=0)
	N = S.shape[0]
	np.fill_diagonal(S, -2*np.ones(N))
	neg_s_idx = S.argsort(axis=1)[:, -topN:]
	neg_i_idx = S.argsort(axis=0)[-topN:, :]
	s_feat_neg = s_feat[neg_s_idx.flatten('C')]
	i_feat_neg = i_feat[neg_i_idx.flatten('F')]
	return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg 

Example 28

def top_K_loss(self, sentence, image, K=30, margin=0.5):
	sim_matrix = tf.matmul(sentence, image, transpose_b=True)
	s_square = tf.reduce_sum(tf.square(sentence), axis=1)
	im_square = tf.reduce_sum(tf.square(image), axis=1)
	d = tf.reshape(s_square,[-1,1]) - 2 * sim_matrix + tf.reshape(im_square, [1, -1])
	positive = tf.stack([tf.matrix_diag_part(d)] * K, axis=1)
	length = tf.shape(d)[-1]
	d = tf.matrix_set_diag(d, 8 * tf.ones([length]))
	sen_loss_K ,_ = tf.nn.top_k(-1.0 * d, K, sorted=False) # note: this is negative value
	im_loss_K,_ = tf.nn.top_k(tf.transpose(-1.0 * d), K, sorted=False) # note: this is negative value
	sentence_center_loss = tf.nn.relu(positive + sen_loss_K + margin)
	image_center_loss = tf.nn.relu(positive + im_loss_K + margin)
	self.d_neg = (sen_loss_K + im_loss_K)/-2.0
	self.d_pos = positive
	self.endpoint['debug/im_loss_topK'] = -1.0 * im_loss_K
	self.endpoint['debug/sen_loss_topK'] = -1.0 * sen_loss_K 
	self.endpoint['debug/d_Matrix'] = d
	self.endpoint['debug/positive'] = positive
	self.endpoint['debug/s_center_loss'] = sentence_center_loss
	self.endpoint['debug/i_center_loss'] = image_center_loss
	self.endpoint['debug/S'] = sim_matrix
	self.endpoint['debug/sentence_square'] = s_square
	self.endpoint['debug/image_square'] = im_square
	return tf.reduce_sum(sentence_center_loss), tf.reduce_sum(image_center_loss) 

Example 29

def conv_feat_map_tensor_gram(conv_fmap_tensor):
  """Compute Gram matrix of conv feature maps.

  Used in style transfer.
  """
  tf.assert_equal(tf.rank(conv_fmap_tensor), 4)
  shape = tf.shape(conv_fmap_tensor)
  num_images = shape[0]
  width = shape[1]
  height = shape[2]
  num_filters = shape[3]
  filters = tf.reshape(conv_fmap_tensor,
                       tf.stack([num_images, -1, num_filters]))
  grams = tf.matmul(
      filters, filters,
      transpose_a=True) / tf.to_float(width * height * num_filters)
  return grams 

Example 30

def abs_to_rel_f(vector, cell, pbc):
    """
    Converts a position vector in absolut coordinates to relative coordinates
    for a film system.
    """
    # TODO this currently only works if the z-coordinate is the one with no pbc
    # Therefore if a structure with x non pbc is given this should also work.
    # maybe write a 'tranform film to fleur_film routine'?
    if len(vector) == 3:
        if pbc[2] == False:
            # leave z coordinate absolut
            # convert only x and y.
            postionR =  np.array(vector)
            postionR_f =  np.array(postionR[:2])
            cell_np = np.array(cell)
            cell_np = np.array(cell_np[0:2, 0:2])
            inv_cell_np = np.linalg.inv(cell_np)
            new_xy = [i for i in np.matmul(postionR_f, inv_cell_np)]#np.matmul(inv_cell_np, postionR_f)]
            new_rel_pos_f = [new_xy[0], new_xy[1], postionR[2]]
            return new_rel_pos_f
        else:
            print 'FLEUR can not handle this type of film coordinate'
    else:
        return False 

Example 31

def rel_to_abs_f(vector, cell):
    """
    Converts a position vector in interal coordinates to absolut coordinates
    in Angstroem for a film structure (2D).
    """
    # TODO this currently only works if the z-coordinate is the one with no pbc
    # Therefore if a structure with x non pbc is given this should also work.
    # maybe write a 'tranform film to fleur_film routine'?
    if len(vector) == 3:
        postionR =  np.array(vector)
        postionR_f =  np.array(postionR[:2])
        #print postionR_f
        cell_np = np.array(cell)
        cell_np = np.array(cell_np[0:2, 0:2])
        #print cell_np
        new_xy = [i for i in np.matmul(postionR_f, cell_np)]
        new_abs_pos_f = [new_xy[0], new_xy[1], postionR[2]]
        return new_abs_pos_f
    else:
        return False 

Example 32

def test_exceptions(self):
        dims = [
            ((1,), (2,)),            # mismatched vector vector
            ((2, 1,), (2,)),         # mismatched matrix vector
            ((2,), (1, 2)),          # mismatched vector matrix
            ((1, 2), (3, 1)),        # mismatched matrix matrix
            ((1,), ()),              # vector scalar
            ((), (1)),               # scalar vector
            ((1, 1), ()),            # matrix scalar
            ((), (1, 1)),            # scalar matrix
            ((2, 2, 1), (3, 1, 2)),  # cannot broadcast
            ]

        for dt, (dm1, dm2) in itertools.product(self.types, dims):
            a = np.ones(dm1, dtype=dt)
            b = np.ones(dm2, dtype=dt)
            assert_raises(ValueError, self.matmul, a, b) 

Example 33

def test_shapes(self):
        dims = [
            ((1, 1), (2, 1, 1)),     # broadcast first argument
            ((2, 1, 1), (1, 1)),     # broadcast second argument
            ((2, 1, 1), (2, 1, 1)),  # matrix stack sizes match
            ]

        for dt, (dm1, dm2) in itertools.product(self.types, dims):
            a = np.ones(dm1, dtype=dt)
            b = np.ones(dm2, dtype=dt)
            res = self.matmul(a, b)
            assert_(res.shape == (2, 1, 1))

        # vector vector returns scalars.
        for dt in self.types:
            a = np.ones((2,), dtype=dt)
            b = np.ones((2,), dtype=dt)
            c = self.matmul(a, b)
            assert_(np.array(c).shape == ()) 

Example 34

def test_numpy_ufunc_override(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        class A(np.ndarray):
            def __new__(cls, *args, **kwargs):
                return np.array(*args, **kwargs).view(cls)

            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return "A"

        class B(np.ndarray):
            def __new__(cls, *args, **kwargs):
                return np.array(*args, **kwargs).view(cls)

            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return NotImplemented

        a = A([1, 2])
        b = B([1, 2])
        c = np.ones(2)
        assert_equal(self.matmul(a, b), "A")
        assert_equal(self.matmul(b, a), "A")
        assert_raises(TypeError, self.matmul, b, c) 

Example 35

def mul(self, matrix):
        '''Multiply this matrix by `matrix`
        The order of operation is: `this @ matrix`.

        *Parameters:*

        - `matrix`: `Matrix4`
        '''
        # Make a matrix4 shape to matmul function
        view1 = np.reshape(self._values, (4, 4))
        view2 = np.reshape(matrix.values, (4, 4))
        self.tmp.shape = (4, 4)

        # np.matmul(view2, view1, out=out)
        np.matmul(view2, view1, out=self.tmp)

        self.tmp.shape = (16,)
        self._values[:] = self.tmp

        return self 

Example 36

def select_negtive(self, i_feat, s_feat, sess, topN=50):
        '''
        Select the triplets with the largest losses \n
        return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
        '''
        feed_dict = {self.image_feat: i_feat, self.sentence_feat:s_feat}
        i_embed, s_embed = sess.run([self.image_fc2, self.sentence_fc2], feed_dict=feed_dict)
        S = np.matmul(i_embed, s_embed.T)
        i_feat_pos = i_feat.repeat(topN, axis=0)
        s_feat_pos = s_feat.repeat(topN, axis=0)
        N = S.shape[0]
        np.fill_diagonal(S, -2*np.ones(N))
        neg_s_idx = S.argsort(axis=1)[:, -topN:]
        neg_i_idx = S.argsort(axis=0)[-topN:, :]
        s_feat_neg = s_feat[neg_s_idx.flatten('C')]
        i_feat_neg = i_feat[neg_i_idx.flatten('F')]
        return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg 

Example 37

def select_negtive(self, i_feat, s_feat, sess, topN=50):
        '''
        Select the triplets with the largest losses \n
        return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
        '''
        feed_dict = {self.image_feat: i_feat, self.sentence_feat:s_feat}
        i_embed, s_embed = sess.run([self.image_fc2, self.sentence_fc2], feed_dict=feed_dict)
        S = np.matmul(i_embed, s_embed.T)
        i_feat_pos = i_feat.repeat(topN, axis=0)
        s_feat_pos = s_feat.repeat(topN, axis=0)
        N = S.shape[0]
        np.fill_diagonal(S, -2*np.ones(N))
        neg_s_idx = S.argsort(axis=1)[:, -topN:]
        neg_i_idx = S.argsort(axis=0)[-topN:, :]
        s_feat_neg = s_feat[neg_s_idx.flatten('C')]
        i_feat_neg = i_feat[neg_i_idx.flatten('F')]
        return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg 

Example 38

def get_xyz(interface, xyz_from_camera):
    angles = interface.current_status.angles[0:3]

    # Get current XYZ
    P0t = DobotModel.forward_kinematics(angles)

    # Getting Desired XYZ of end effector
    Pct = np.array(CAMERA_OFFSET)
    R0t = DobotModel.R0T(angles)
    Rtc = np.array([[0, 1, 0], [1, 0, 0], [0, 0, -1]])
    R0c = np.matmul(R0t, Rtc)

    Pta = np.matmul(R0c, xyz_from_camera) - np.matmul(R0c, Pct)
    target = np.reshape(Pta, (3, 1)) + np.reshape(P0t, (3, 1))
    return target


# FUNCTION: Touch - Place the end effector on top of an AR tag
# AR TAGS: DUCKY = 0  DUCKYBOT = 1   OBSTACLE = 2 

Example 39

def __compute_valid_convolution_nd(data, kernel, dimension: int):
    convolution_shape = tuple(data.shape[i] - kernel.shape[i] + 1 for i in range(-1, -dimension - 1, -1))
    list_dimension = reduce(lambda a, b: a * b, convolution_shape)
    data_prefix = data.shape[:-dimension]
    kernel_flat = kernel.ravel()
    data_flat = numpy.zeros(data_prefix + (list_dimension, len(kernel_flat)))
    for i in range(list_dimension):
        tensor_slice_start = [0] * len(kernel.shape)
        tensor_slice = [slice(None)] * len(data.shape)
        tensor_slice_start[-1] = i
        for r in range(-1, -len(kernel.shape) - 1, -1):
            dimension_scale = data.shape[r] - kernel.shape[r] + 1
            if tensor_slice_start[r] >= dimension_scale:
                tensor_slice_start[r + 1] = tensor_slice_start[r] // dimension_scale
                tensor_slice_start[r] %= dimension_scale
            tensor_slice[r] = slice(tensor_slice_start[r], tensor_slice_start[r] + kernel.shape[r])
        sub_convolution_index = (slice(None),) * (len(data.shape) - dimension) + tuple([i, slice(None)])
        data_flat[sub_convolution_index] = data[tensor_slice].reshape(data_prefix + (reduce(lambda a, b: a * b, kernel.shape),))
    convolution_flat = numpy.matmul(data_flat, numpy.flip(kernel_flat, axis=0))
    convolution_nd = convolution_flat.reshape(data_prefix + convolution_shape)
    return convolution_nd 

Example 40

def test_matmul_two_vars():
    x2 = ad.Variable(name='x2')
    x3 = ad.Variable(name='x3')
    y = ad.matmul(x2, x3)

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])
    executor = ad.Executor([y, grad_x2, grad_x3])
    x2_val = np.array([[1, 2], [3, 4], [5, 6]])  # 3x2
    x3_val = np.array([[7, 8, 9], [10, 11, 12]])  # 2x3

    y_val, grad_x2_val, grad_x3_val = executor.run(feed_shapes={x2: x2_val, x3: x3_val})

    expected_yval = np.matmul(x2_val, x3_val)
    expected_grad_x2_val = np.matmul(np.ones_like(expected_yval), np.transpose(x3_val))
    expected_grad_x3_val = np.matmul(np.transpose(x2_val), np.ones_like(expected_yval))

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, expected_yval)
    assert np.array_equal(grad_x2_val, expected_grad_x2_val)
    assert np.array_equal(grad_x3_val, expected_grad_x3_val) 

Example 41

def test_matmul_var_and_param():
    x2 = ad.Variable(name="x2")
    w2_val = np.array([[7, 8, 9], [10, 11, 12]])  # 2x3
    w2 = ad.Parameter(name="w2", init=w2_val)
    y = ad.matmul(x2, w2)

    grad_x2, grad_w2 = ad.gradients(y, [x2, w2])

    executor = ad.Executor([y, grad_x2, grad_w2])
    x2_val = np.array([[1, 2], [3, 4], [5, 6]])  # 3x2

    y_val, grad_x2_val, grad_w2_val = executor.run(feed_shapes={x2: x2_val})

    expected_yval = np.matmul(x2_val, w2_val)
    expected_grad_x2_val = np.matmul(np.ones_like(expected_yval), np.transpose(w2_val))
    expected_grad_x3_val = np.matmul(np.transpose(x2_val), np.ones_like(expected_yval))

    assert isinstance(y, ad.Node)
    # assert np.array_equal(y_val, expected_yval)
    # assert np.array_equal(grad_x2_val, expected_grad_x2_val)
    # assert np.array_equal(grad_w2_val, expected_grad_x3_val) 

Example 42

def output_step_scan(self, dummy, new_state):

        if self.dale_ratio:
            new_output = tf.matmul(
                            tf.nn.relu(new_state),
                            tf.matmul(
                                tf.abs(self.W_out) * self.output_Connectivity,
                                self.Dale_out,
                                name="in_2"),
                            transpose_b=True, name="3")\
                         + self.b_out

        else:
            new_output = tf.matmul(tf.nn.relu(new_state), self.W_out * self.output_Connectivity,
                                   transpose_b=True, name="3") + self.b_out

        return new_output 

Example 43

def gradient(x0, X, y, alpha):
    # gradient of the logistic loss

    w, c = x0[1:137], x0[0]

    #print("c is " + str(c))
    z = X.dot(w) + c
    z = phi(y * z)
    z0 = (z - 1) * y
    grad_w = np.matmul(z0,X) / X.shape[0] + alpha * w
    grad_c = z0.sum() / X.shape[0]

    grad_c = np.array(grad_c)
    #print(grad_w[0,1:5])
    return np.c_[([grad_c], grad_w)]


##### Stochastic Gradient Descent Optimiser ###### 

Example 44

def gradient(x0, X, y, alpha):
    # gradient of the logistic loss

    w, c = x0[1:137], x0[0]

    #print("c is " + str(c))
    z = X.dot(w) + c
    z = phi(y * z)
    z0 = (z - 1) * y
    grad_w = np.matmul(z0,X) / X.shape[0] + alpha * w
    grad_c = z0.sum() / X.shape[0]

    grad_c = np.array(grad_c)
    #print(grad_w[0,1:5])
    return np.c_[([grad_c], grad_w)]


##### Stochastic Gradient Descent Optimiser ###### 

Example 45

def test_exceptions(self):
        dims = [
            ((1,), (2,)),            # mismatched vector vector
            ((2, 1,), (2,)),         # mismatched matrix vector
            ((2,), (1, 2)),          # mismatched vector matrix
            ((1, 2), (3, 1)),        # mismatched matrix matrix
            ((1,), ()),              # vector scalar
            ((), (1)),               # scalar vector
            ((1, 1), ()),            # matrix scalar
            ((), (1, 1)),            # scalar matrix
            ((2, 2, 1), (3, 1, 2)),  # cannot broadcast
            ]

        for dt, (dm1, dm2) in itertools.product(self.types, dims):
            a = np.ones(dm1, dtype=dt)
            b = np.ones(dm2, dtype=dt)
            assert_raises(ValueError, self.matmul, a, b) 

Example 46

def test_shapes(self):
        dims = [
            ((1, 1), (2, 1, 1)),     # broadcast first argument
            ((2, 1, 1), (1, 1)),     # broadcast second argument
            ((2, 1, 1), (2, 1, 1)),  # matrix stack sizes match
            ]

        for dt, (dm1, dm2) in itertools.product(self.types, dims):
            a = np.ones(dm1, dtype=dt)
            b = np.ones(dm2, dtype=dt)
            res = self.matmul(a, b)
            assert_(res.shape == (2, 1, 1))

        # vector vector returns scalars.
        for dt in self.types:
            a = np.ones((2,), dtype=dt)
            b = np.ones((2,), dtype=dt)
            c = self.matmul(a, b)
            assert_(np.array(c).shape == ()) 

Example 47

def test_numpy_ufunc_override(self):
        # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844
        return

        class A(np.ndarray):
            def __new__(cls, *args, **kwargs):
                return np.array(*args, **kwargs).view(cls)

            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return "A"

        class B(np.ndarray):
            def __new__(cls, *args, **kwargs):
                return np.array(*args, **kwargs).view(cls)

            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return NotImplemented

        a = A([1, 2])
        b = B([1, 2])
        c = np.ones(2)
        assert_equal(self.matmul(a, b), "A")
        assert_equal(self.matmul(b, a), "A")
        assert_raises(TypeError, self.matmul, b, c) 

Example 48

def precalc(C, R, x_bar_list, P_bar_list):
    assert C.ndim == 2
    assert R.ndim == 2

    nMeasurement, nStates = x_bar_list.shape
    nObservableState = C.shape[0]

    z_hat_list = C.dot(x_bar_list.T).T
    S_list = np.matmul(np.matmul(C, P_bar_list), C.T) + R
    S_inv_list = np.linalg.inv(S_list)
    K_list = np.matmul(np.matmul(P_bar_list, C.T), S_inv_list)
    P_hat_list = P_bar_list - np.matmul(K_list.dot(C), P_bar_list)

    assert z_hat_list.shape == (nMeasurement, nObservableState), "z_hat ERROR"
    assert S_list.shape == (nMeasurement, nObservableState, nObservableState), "S ERROR"
    assert S_inv_list.shape == S_list.shape, "S_inv ERROR"
    assert K_list.shape == (nMeasurement, nStates, nObservableState)
    assert P_hat_list.shape == P_bar_list.shape, "P_hat ERROR"

    return z_hat_list, S_list, S_inv_list, K_list, P_hat_list 

Example 49

def correlation(task,load=True):
    self = mytask
    if load:
        self.initialize(_load=True, _logging=False, _log_dir='other/')
    data = []
    for batch in self.iterate_minibatches('valid'):
        xtrain, ytrain = batch
        ytrain = np.eye(10)[ytrain]
        feed_dict = {self.x: xtrain, self.y: ytrain, self.sigma0: 1., self.initial_keep_prob: task['initial_keep_prob'],  self.is_training: False}
        z = tf.get_collection('log_network')[-1]
        batch_z = self.sess.run( z, feed_dict)
        data.append(batch_z)
    data = np.vstack(data)
    data = data.reshape(data.shape[0],-1)
    def normal_tc(c0):
        c1i = np.diag(1./np.diag(c0))
        p = np.matmul(c1i,c0)
        return - .5 * np.linalg.slogdet(p)[1] / c0.shape[0]
    c0 = np.cov( data, rowvar=False )
    tc = normal_tc(c0)
    print "Total correlation: %f" % tc 

Example 50

def test_exceptions(self):
        dims = [
            ((1,), (2,)),            # mismatched vector vector
            ((2, 1,), (2,)),         # mismatched matrix vector
            ((2,), (1, 2)),          # mismatched vector matrix
            ((1, 2), (3, 1)),        # mismatched matrix matrix
            ((1,), ()),              # vector scalar
            ((), (1)),               # scalar vector
            ((1, 1), ()),            # matrix scalar
            ((), (1, 1)),            # scalar matrix
            ((2, 2, 1), (3, 1, 2)),  # cannot broadcast
            ]

        for dt, (dm1, dm2) in itertools.product(self.types, dims):
            a = np.ones(dm1, dtype=dt)
            b = np.ones(dm2, dtype=dt)
            assert_raises(ValueError, self.matmul, a, b) 
点赞