The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def setdiff(eq1, eq2): eq1, eq2 = eqsize(eq1, eq2) c1 = [None] * eq1.shape c2 = [None] * eq2.shape for i in range(0, eq1.size): c1.append[i] = hash(eq2[i]) for i in range(0, eq2.size): c2[i] = hash(eq2[i]) ia = np.delete(np.arange(np.alen(c1)), np.searchsorted(c1, c2)) ia = (ia[:]).conj().T p = eq1[ia] return p, ia
Example 2
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 3
def _validate_dataset(ds): if not type(ds.data) is np.ndarray: return ['Dataset.data must be a numpy.ndarray'] elif np.alen(ds.data) < 1: return ['Dataset.data must not be empty'] elif not np.issubdtype(ds.data.dtype, np.float64): return ['Dataset.data.dtype must be numpy.float64'] if ds.is_scale: if len(ds.data.shape) != 1: return ['Scales must be one-dimensional'] if np.any(np.diff(ds.data) <= 0): return ['Scales must be strictly monotonic increasing'] else: if (len(ds.data.shape) >= 1) and (ds.data.shape[0] > 0) and not (len(ds.data.shape) == len(ds.scales)): return ['The number of scales does not match the number of dimensions'] return []
Example 4
def test_basic(self): m = np.array([1, 2, 3]) self.assertEqual(np.alen(m), 3) m = np.array([[1, 2, 3], [4, 5, 7]]) self.assertEqual(np.alen(m), 2) m = [1, 2, 3] self.assertEqual(np.alen(m), 3) m = [[1, 2, 3], [4, 5, 7]] self.assertEqual(np.alen(m), 2)
Example 5
def test_singleton(self): self.assertEqual(np.alen(5), 1)
Example 6
def test_basic(self): m = np.array([1, 2, 3]) self.assertEqual(np.alen(m), 3) m = np.array([[1, 2, 3], [4, 5, 7]]) self.assertEqual(np.alen(m), 2) m = [1, 2, 3] self.assertEqual(np.alen(m), 3) m = [[1, 2, 3], [4, 5, 7]] self.assertEqual(np.alen(m), 2)
Example 7
def test_singleton(self): self.assertEqual(np.alen(5), 1)
Example 8
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 9
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 10
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 11
def test_basic(self): m = np.array([1, 2, 3]) self.assertEqual(np.alen(m), 3) m = np.array([[1, 2, 3], [4, 5, 7]]) self.assertEqual(np.alen(m), 2) m = [1, 2, 3] self.assertEqual(np.alen(m), 3) m = [[1, 2, 3], [4, 5, 7]] self.assertEqual(np.alen(m), 2)
Example 12
def test_singleton(self): self.assertEqual(np.alen(5), 1)
Example 13
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 14
def test_basic(self): m = np.array([1, 2, 3]) self.assertEqual(np.alen(m), 3) m = np.array([[1, 2, 3], [4, 5, 7]]) self.assertEqual(np.alen(m), 2) m = [1, 2, 3] self.assertEqual(np.alen(m), 3) m = [[1, 2, 3], [4, 5, 7]] self.assertEqual(np.alen(m), 2)
Example 15
def test_singleton(self): self.assertEqual(np.alen(5), 1)
Example 16
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 17
def test_basic(self): m = np.array([1, 2, 3]) self.assertEqual(np.alen(m), 3) m = np.array([[1, 2, 3], [4, 5, 7]]) self.assertEqual(np.alen(m), 2) m = [1, 2, 3] self.assertEqual(np.alen(m), 3) m = [[1, 2, 3], [4, 5, 7]] self.assertEqual(np.alen(m), 2)
Example 18
def test_singleton(self): self.assertEqual(np.alen(5), 1)
Example 19
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 20
def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- alen ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) >>> np.shape(a) (2,) >>> a.shape (2,) """ try: result = a.shape except AttributeError: result = asarray(a).shape return result
Example 21
def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- alen ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) >>> np.shape(a) (2,) >>> a.shape (2,) """ try: result = a.shape except AttributeError: result = asarray(a).shape return result
Example 22
def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- alen ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) >>> np.shape(a) (2,) >>> a.shape (2,) """ try: result = a.shape except AttributeError: result = asarray(a).shape return result
Example 23
def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- alen ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) >>> np.shape(a) (2,) >>> a.shape (2,) """ try: result = a.shape except AttributeError: result = asarray(a).shape return result
Example 24
def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- alen ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) >>> np.shape(a) (2,) >>> a.shape (2,) """ try: result = a.shape except AttributeError: result = asarray(a).shape return result
Example 25
def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- alen ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) >>> np.shape(a) (2,) >>> a.shape (2,) """ try: result = a.shape except AttributeError: result = asarray(a).shape return result
Example 26
def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- alen ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) >>> np.shape(a) (2,) >>> a.shape (2,) """ try: result = a.shape except AttributeError: result = asarray(a).shape return result