Python numpy.Inf() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def _ncc_c(x, y):
    """
    >>> _ncc_c([1,2,3,4], [1,2,3,4])
    array([ 0.13333333,  0.36666667,  0.66666667,  1.        ,  0.66666667,
            0.36666667,  0.13333333])
    >>> _ncc_c([1,1,1], [1,1,1])
    array([ 0.33333333,  0.66666667,  1.        ,  0.66666667,  0.33333333])
    >>> _ncc_c([1,2,3], [-1,-1,-1])
    array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
    """
    den = np.array(norm(x) * norm(y))
    den[den == 0] = np.Inf

    x_len = len(x)
    fft_size = 1<<(2*x_len-1).bit_length()
    cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
    cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
    return np.real(cc) / den 

Example 2

def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False) 

Example 3

def SLcomputeSNR(X, Xnoisy):
    """
    SLcomputeSNR Compute signal to noise ratio (SNR).

    Usage:

        SNR = SLcomputeSNR(X, Xnoisy)

    Input:

        X:      2D or 3D signal.
        Xnoisy: 2D or 3D noisy signal.

    Output:

        SNR: The signal to noise ratio (in dB).
    """

    if np.linalg.norm(X-Xnoisy) == 0:
        return np.Inf
    else:
        return 10 * np.log10( np.sum(np.power(X,2)) / np.sum(np.power(X-Xnoisy,2)) ) 

Example 4

def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False) 

Example 5

def __init__(self,shape,z0rep_axes=(0,), z1rep_axes=(0,), map_est=False):
        Estim.__init__(self)
        self.shape = shape
        ndim = len(shape)
        if z0rep_axes == 'all':
            z0rep_axes = tuple(range(ndim))
        if z1rep_axes == 'all':
            z1rep_axes = tuple(range(ndim))            
        self.z0rep_axes = z0rep_axes
        self.z1rep_axes = z1rep_axes
        self.cost_avail = True
        self.map_est = map_est
        
        # Initial variances
        self.zvar0_init= np.Inf
        self.zvar1_init= np.Inf 

Example 6

def __init__(self,y,shape,zrep_axes=(0,),thresh=0,perr=1e-6,\
                 var_init=np.Inf):
        
        Estim.__init__(self)
        self.y = y
        self.shape = shape
        self.thresh = thresh
        self.perr = perr
        self.cost_avail = True
        self.var_init = var_init
       
        # Set the repetition axes
        ndim = len(self.shape)
        if zrep_axes == 'all':
            zrep_axes = tuple(range(ndim))
        self.zrep_axes = zrep_axes 

Example 7

def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False) 

Example 8

def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4 

Example 9

def test_invalid_nbins():
    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, num_bins=np.NaN)

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, num_bins=np.Inf)

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, num_bins=2)


# test_multi_edge()
# test_multi_edge_CLI()
# test_empty_subject_list()
# test_run_no_IO()
# test_run_roi_stats_via_API()
# test_run_roi_stats_via_CLI()
# test_CLI_only_weight_or_stats() 

Example 10

def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in xrange(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in xrange(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False) 

Example 11

def update(self, decision):

		for context in self.contexts:
			if decision in self.contexts[context]:
				self.contexts_scores[context] += eta + np.random.randn()*1e-5

		# special condition for names:
		if decision in women_names:
			self.women_names_score = np.Inf
			self.men_names_score = 0.
			self.robots_names_score = -1.
		if decision in men_names:
			self.women_names_score = 0.
			self.men_names_score = np.Inf
			self.robots_names_score = -1.
		if decision in robots_names:
			self.women_names_score = np.random.randn()*1e-5
			self.men_names_score = np.random.randn()*1e-5
			self.robots_names_score = np.Inf

		self.most_likely_context = max(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
		self.less_likely_context = min(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0] 

Example 12

def update(self, decision):

		for context in self.contexts:
			if decision in self.contexts[context]:
				self.contexts_scores[context] += eta + np.random.randn()*1e-5

		# special condition for names:
		if decision in women_names:
			self.women_names_score = np.Inf
			self.men_names_score = 0.
			self.robots_names_score = -1.
		if decision in men_names:
			self.women_names_score = 0.
			self.men_names_score = np.Inf
			self.robots_names_score = -1.
		if decision in robots_names:
			self.women_names_score = np.random.randn()*1e-5
			self.men_names_score = np.random.randn()*1e-5
			self.robots_names_score = np.Inf

		self.most_likely_context = max(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
		self.less_likely_context = min(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0] 

Example 13

def update(self, decision, weight):

		for context in CONTEXTS:
			if decision in CONTEXTS[context]:
				self.contexts_scores[context] += weight + np.random.randn()*1e-5

		# special condition for names:
		if decision in women_names:
			self.women_names_score = np.Inf
			self.men_names_score = 0.
			self.robots_names_score = -1.
		if decision in men_names:
			self.women_names_score = 0.
			self.men_names_score = np.Inf
			self.robots_names_score = -1.
		if decision in robots_names:
			self.women_names_score = np.random.randn()*1e-5
			self.men_names_score = np.random.randn()*1e-5
			self.robots_names_score = np.Inf

		self.most_likely_context = max(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
		self.less_likely_context = min(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0] 

Example 14

def update(self, decision):

		for context in self.contexts:
			if decision in self.contexts[context]:
				self.contexts_scores[context] += eta + np.random.randn()*1e-5

		# special condition for names:
		if decision in women_names:
			self.women_names_score = np.Inf
			self.men_names_score = 0.
			self.robots_names_score = -1.
		if decision in men_names:
			self.women_names_score = 0.
			self.men_names_score = np.Inf
			self.robots_names_score = -1.
		if decision in robots_names:
			self.women_names_score = np.random.randn()*1e-5
			self.men_names_score = np.random.randn()*1e-5
			self.robots_names_score = np.Inf

		self.most_likely_context = max(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
		self.less_likely_context = min(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0] 

Example 15

def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        
        # define required options
        if not 'pBins' in self.opt:
            self.opt['pBins']=10
        if not 'inertia' in self.opt:
            self.opt['inertia']=0.5
        if not 'c1' in self.opt:
            self.opt['c1']=0.6
        if not 'c2' in self.opt:
            self.opt['c2']=0.3
        if not 'c3' in self.opt:
            self.opt['c3']=0.001
        
        if self.opt['c3']==0:
            self.opt['c3']=1E-5

        # define required variables
        self.pBestIdxs=np.arange(self.opt['population'], dtype=np.int32)
        self.gBestIdxs=np.arange(self.opt['population'], dtype=np.int32)
        self.velocities=np.zeros((self.opt['population'],self.opt['nVars']))
        tmp=np.hstack((-np.Inf, np.linspace(0,1, num=self.opt['pBins'])))
        self.pBins=np.vstack((tmp[0:-1],tmp[1:])) 

Example 16

def _reset(self):
	    """Resets wait counter and cooldown counter.
	    """
	    if self.mode not in ['auto', 'min', 'max']:
	      logging.warning('Learning Rate Plateau Reducing mode %s is unknown, '
	                      'fallback to auto mode.' % (self.mode))
	      self.mode = 'auto'
	    if (self.mode == 'min' or
	        (self.mode == 'auto' and 'acc' not in self.monitor)):
	      self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
	      self.best = np.Inf
	    else:
	      self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
	      self.best = -np.Inf
	    self.cooldown_counter = 0
	    self.wait = 0
	    self.lr_epsilon = self.min_lr * 1e-4 

Example 17

def _get_best_trial(filename, cut=None):
    try:
        fh = open(filename, "r")
        trials = cPickle.load(fh)
        fh.close()

        current_best = numpy.Inf
        best_idx = 0
        if cut is None:
            cut = len(trials['trials'])
        print filename, "#Trials", len(trials['trials'])
        for i, trial in enumerate(trials['trials'][:cut]):
            result = trial['result']
            if result < current_best:
                best_idx = i
                current_best = result
        if current_best == numpy.Inf:
            raise Exception("%s does not contain any results" % filename)
        return current_best, best_idx
    except Exception as e:
        print "Problem with ", filename, e
        sys.stdout.flush()
        return None, None

# TODO: Don't know whether this is longer needed 

Example 18

def plot_all_times_to_correct_decision(self,thr=0.5,stay_above=True,unit="spikes",spikemeasure="growing_spikecount", do_title=True):
        times = np.array([self.time_to_correct_decision(e,thr,stay_above,unit,spikemeasure) for e in self.experiments]).flatten()
        # times[30:50] = np.Inf
        maximum = int(np.ceil(max(times[times!=np.Inf])))
        plt_inf = maximum+2 # for unsuccessful trials (time=Inf), set time to some value distinct from any actual decision time.
        times[times==np.Inf] = plt_inf

        fig = plt.figure(figsize=(hcPlotting.fig_width,hcPlotting.fig_height/3))

        bins = np.hstack([np.arange(0.25,maximum+1,0.5),[plt_inf,plt_inf+1]])
        n,_,_ = plt.hist(times,bins,color='k',edgecolor='w')

        ax = plt.gca()
        ax.set_xlim((0,plt_inf+1))
        ax.set_ylim(ax.get_ylim()[0],ax.get_ylim()[1]+1)
        plt.plot((plt_inf,plt_inf),(0,ax.get_ylim()[1]),'r')

        ax.set_xticks(range(maximum+1)+[plt_inf+0.5])
        ax.set_xticklabels([str(i) for i in range(maximum+1)]+[r'$\infty$'])

        ax.set_ylabel("nr. of trials")
        ax.set_xlabel("spikes observed before classification")
        if do_title:
            plt.title("thr = "+str(thr)+", stay_above = "+str(stay_above)+", classes: " +" vs. ".join(self.classes)) 

Example 19

def __init__(self, monitor='val_loss', patience=0, verbose=0, mode='auto'):
        super(Callback, self).__init__()

        self.monitor = monitor
        self.patience = patience
        self.verbose = verbose
        self.wait = 0
        self.best_epoch = 0

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf 

Example 20

def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                          if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                          if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False) 

Example 21

def __init__(self, monitor='val_loss', mode='auto', verbose=0):
        super(BestWeight, self).__init__()
        self.monitor = monitor
        self.mode = mode
        self.best_weights = None
        self.verbose = verbose
        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf 

Example 22

def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4 

Example 23

def process_questions(C, all_words, n):
    scores = dist_function[0](C[:, all_words], W[all_words, :], W2)
    worst = -dist_function[1]*numpy.Inf
    for i in range(C.shape[0]):
        scores[i, C[i, :].nonzero()[1]] = worst
    if dist_function[1] > 0:
        hits = scores.argpartition(-n, axis=1)[:, -n:]
        answers = [sorted(hits[i], key=lambda hit: scores[i, hit], reverse=True) for i in range(len(hits))]
    else:
        hits = scores.argpartition(n, axis=1)[:, :n]
        answers = [sorted(hits[i], key=lambda hit: scores[i, hit], reverse=False) for i in range(len(hits))]
    if args.log_level > 1:
        small_scores = [scores[i, answers[i]] for i in xrange(hits.shape[0])]
    else:
        small_scores = None
    return answers, small_scores 

Example 24

def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4 

Example 25

def __init__(self, filepath, monitor='val_loss', verbose=0, save_best_only=False, mode='auto'):

        super(Callback, self).__init__()
        self.monitor = monitor
        self.verbose = verbose
        self.filepath = filepath
        self.save_best_only = save_best_only
        
        if mode not in ['auto', 'min', 'max']:
            warnings.warn("ModelCheckpoint mode %s is unknown, fallback to auto mode" % (self.mode), RuntimeWarning)
            mode = 'auto'
            
        if mode == "min":
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == "max":
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if "acc" in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf 

Example 26

def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4 

Example 27

def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False) 

Example 28

def parse_location_string(loc_string):
    """
    Parse a UCSC format location string (e.g. "chr2:1000-1100") and return
    an interval tuple in the format ('chr2', 1000, 1100).

    :param loc_string: Input location string
    :type loc_string: :ref:`location string <location_string>`
    :returns: (chromosome name, start coordinate, stop coordinate)
    """

    chrom_fields = loc_string.split(':')

    chrom = chrom_fields[0]

    if len(chrom_fields) == 1:

        start, stop = 0, np.Inf

    else:

        pos_fields = chrom_fields[1].split('-')

        start, stop = (int(pos.replace(",", "")) for pos in pos_fields)

    return chrom, start, stop 

Example 29

def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False) 

Example 30

def __init__(self, monitor='val_loss', cut_ratio=0.5, patience=2, scheduled_start_epoch=1, scheduled_cut_ratio=1.):
        """
        Args:
            monitor: quantity to be monitored.
            cut_ratio: cut the learning rate by this percent.
            patience: number of epochs with no improvement
                after which training will be stopped.
            scheduled_start_epoch: from which epoch to do scheduled learning rate discount
            scheduled_cut_ratio: learning rate discount ratio.
        """
        super(Callback, self).__init__()
        self.monitor = monitor
        self.patience = patience
        self.best = np.Inf
        self.wait = 0
        self.cut_ratio = cut_ratio
        self.monitor_decrease = False
        self.scheduled_start_epoch = scheduled_start_epoch
        self.scheduled_cut_ratio = scheduled_cut_ratio 

Example 31

def _get_bounds(self, ib, dimension):
        """ib == 0/1 means lower/upper bound, return a vector of length
        `dimension` """
        sign_ = 2 * ib - 1
        assert sign_**2 == 1
        if self.bounds is None or self.bounds[ib] is None:
            return np.array(dimension * [sign_ * np.Inf])
        res = []
        for i in range(dimension):
            res.append(self.bounds[ib][min([i, len(self.bounds[ib]) - 1])])
            if res[-1] is None:
                res[-1] = sign_ * np.Inf
        return np.array(res) 

Example 32

def solve_static(self, F, up_, Dirichlet_bcs_up):
        # Solve stationary Navier-Stokes problem with Picard method
        # other methods may be more acurate and faster

        iter_ = 0
        max_iter = 50
        eps = 1.0
        tol = 1E-3
        under_relax_ratio = 0.7
        up_temp = Function(self.function_space)  # a temporal to save value in the Picard loop

        timer_solver = Timer("TimerSolveStatic")
        timer_solver.start()
        while (iter_ < max_iter and eps > tol):
            # solve the linear stokes flow to avoid up_s = 0

            up_temp.assign(up_)
            # other solving methods
            up_ = self.solve_linear_problem(F, up_, Dirichlet_bcs_up)
            #up_s = self.solve_amg(F, Dirichlet_bcs_up, up_s)  #  AMG is not working with mixed function space

            diff_up = up_.vector().array() - up_temp.vector().array()
            eps = np.linalg.norm(diff_up, ord=np.Inf)

            print("iter = {:d}; eps_up = {:e}; time elapsed = {}\n".format(iter_, eps, timer_solver.elapsed()))

            ## underreleax should be defined here, Courant number, 
            up_.vector()[:] = up_temp.vector().array() + diff_up * under_relax_ratio

            iter_ += 1
        ## end of Picard loop
        timer_solver.stop()
        print("*" * 10 + " end of Navier-Stokes equation iteration" + "*" * 10)

        return up_ 

Example 33

def gen(N, df, thinning=1):
    log_den = log_normal
    if df < np.Inf:
        log_den = grad_log_t_df(df)

    return metropolis_hastings(log_den, chain_size=N, thinning=thinning, x_prev=np.random.randn(), step=0.5)


# estimate size of thinning 

Example 34

def get_thinning(X, nlags=50):
    autocorrelation = acf(X, nlags=nlags, fft=True)
    thinning = np.argmin(np.abs(autocorrelation - 0.95)) + 1
    return thinning, autocorrelation

#
# X = gen(TEST_CHAIN_SIZE, np.Inf)
# thinning, autocorr = get_thinning(X)
# print('thinning for AR normal simulation ', thinning, autocorr[thinning]) 

Example 35

def __init__(self, custom_model, filepath, monitor='val_loss', verbose=0,
                 save_best_only=False, save_weights_only=False,
                 mode='auto', period=1):
        super(CustomModelCheckpoint, self).__init__()
        self.custom_model = custom_model
        self.monitor = monitor
        self.verbose = verbose
        self.filepath = filepath
        self.save_best_only = save_best_only
        self.save_weights_only = save_weights_only
        self.period = period
        self.epochs_since_last_save = 0

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('CustomModelCheckpoint mode %s is unknown, '
                          'fallback to auto mode.' % (mode),
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf 

Example 36

def test_axis(self):
        # Vector norms.
        # Compare the use of `axis` with computing the norm of each row
        # or column separately.
        A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
        for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
            expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
            assert_almost_equal(norm(A, ord=order, axis=0), expected0)
            expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
            assert_almost_equal(norm(A, ord=order, axis=1), expected1)

        # Matrix norms.
        B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
        nd = B.ndim
        for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']:
            for axis in itertools.combinations(range(-nd, nd), 2):
                row_axis, col_axis = axis
                if row_axis < 0:
                    row_axis += nd
                if col_axis < 0:
                    col_axis += nd
                if row_axis == col_axis:
                    assert_raises(ValueError, norm, B, ord=order, axis=axis)
                else:
                    n = norm(B, ord=order, axis=axis)

                    # The logic using k_index only works for nd = 3.
                    # This has to be changed if nd is increased.
                    k_index = nd - (row_axis + col_axis)
                    if row_axis < col_axis:
                        expected = [norm(B[:].take(k, axis=k_index), ord=order)
                                    for k in range(B.shape[k_index])]
                    else:
                        expected = [norm(B[:].take(k, axis=k_index).T, ord=order)
                                    for k in range(B.shape[k_index])]
                    assert_almost_equal(n, expected) 

Example 37

def test_keepdims(self):
        A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)

        allclose_err = 'order {0}, axis = {1}'
        shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}'

        # check the order=None, axis=None case
        expected = norm(A, ord=None, axis=None)
        found = norm(A, ord=None, axis=None, keepdims=True)
        assert_allclose(np.squeeze(found), expected,
                        err_msg=allclose_err.format(None, None))
        expected_shape = (1, 1, 1)
        assert_(found.shape == expected_shape,
                shape_err.format(found.shape, expected_shape, None, None))

        # Vector norms.
        for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
            for k in range(A.ndim):
                expected = norm(A, ord=order, axis=k)
                found = norm(A, ord=order, axis=k, keepdims=True)
                assert_allclose(np.squeeze(found), expected,
                                err_msg=allclose_err.format(order, k))
                expected_shape = list(A.shape)
                expected_shape[k] = 1
                expected_shape = tuple(expected_shape)
                assert_(found.shape == expected_shape,
                        shape_err.format(found.shape, expected_shape, order, k))

        # Matrix norms.
        for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']:
            for k in itertools.permutations(range(A.ndim), 2):
                expected = norm(A, ord=order, axis=k)
                found = norm(A, ord=order, axis=k, keepdims=True)
                assert_allclose(np.squeeze(found), expected,
                                err_msg=allclose_err.format(order, k))
                expected_shape = list(A.shape)
                expected_shape[k[0]] = 1
                expected_shape[k[1]] = 1
                expected_shape = tuple(expected_shape)
                assert_(found.shape == expected_shape,
                        shape_err.format(found.shape, expected_shape, order, k)) 

Example 38

def power_plot(data, sfreq, toffset, log_scale, zscale, title):
    """Plot the computed power of the iq data."""
    print("power")

    t_axis = numpy.arange(0, len(data)) / sfreq + toffset

    if log_scale:
        lrxpwr = 10 * numpy.log10(data + 1E-12)
    else:
        lrxpwr = data

    zscale_low, zscale_high = zscale

    if zscale_low == 0 and zscale_high == 0:
        if log_scale:
            zscale_low = numpy.min(
                lrxpwr[numpy.where(lrxpwr.real != -numpy.Inf)])
            zscale_high = numpy.max(lrxpwr) + 3.0
        else:
            zscale_low = numpy.min(lrxpwr)
            zscale_high = numpy.max(lrxpwr)

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.plot(t_axis, lrxpwr.real)
    ax.grid(True)
    ax.axis([toffset, t_axis[len(t_axis) - 1], zscale_low, zscale_high])

    ax.set_xlabel('time (seconds)')
    if log_scale:
        ax.set_ylabel('power (dB)')
    else:
        ax.set_ylabel('power')
    ax.set_title(title)

    return fig 

Example 39

def spectrum_plot(data, freq, cfreq, toffset, log_scale, zscale, title, clr):
    """Plot a spectrum from the data for a given fft bin size."""
    print("spectrum")
    tail_str = ''
    if log_scale:
        #        pss = 10.0*numpy.log10(data / numpy.max(data))
        pss = 10.0 * numpy.log10(data + 1E-12)
        tail_str = ' (dB)'
    else:
        pss = data

    print freq
    freq_s = freq / 1.0E6 + cfreq / 1.0E6
    print freq_s
    zscale_low, zscale_high = zscale

    if zscale_low == 0 and zscale_high == 0:
        if log_scale:
            zscale_low = numpy.median(
                numpy.min(pss[numpy.where(pss.real != -numpy.Inf)])) - 3.0
            zscale_high = numpy.median(numpy.max(pss)) + 3.0
        else:
            zscale_low = numpy.median(numpy.min(pss))
            zscale_high = numpy.median(numpy.max(pss))

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.plot(freq_s, pss, clr)
    print freq_s[0], freq_s[-1], zscale_low, zscale_high
    ax.axis([freq_s[0], freq_s[-1], zscale_low, zscale_high])
    ax.grid(True)
    ax.set_xlabel('frequency (MHz)')
    ax.set_ylabel('power spectral density' + tail_str, fontsize=12)
    ax.set_title(title)

    return fig 

Example 40

def rti_plot(data, extent, tick_locs, tick_labels, log_scale, zscale, title):

    # set to log scaling
    if log_scale:
        RTId = 10.0 * numpy.log10(data)
    else:
        RTId = data

    zscale_low, zscale_high = zscale
    if zscale_low == 0 and zscale_high == 0:
        if log_scale:
            zscale_low = numpy.median(
                numpy.min(RTId[numpy.where(RTId.real != -numpy.Inf)])) - 3.0
            zscale_high = numpy.median(numpy.max(RTId)) + 10.0
        else:
            zscale_low = numpy.median(numpy.min(RTId))
            zscale_high = numpy.median(numpy.max(RTId))

    vmin = zscale_low
    vmax = zscale_high

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    img = ax.imshow(RTId, origin='lower',
                    extent=extent, interpolation='none', vmin=vmin, vmax=vmax, aspect='auto')

    # plot dates

    ax.set_xticks(tick_locs)
    ax.set_xticklabels(tick_labels, rotation=-45, fontsize=10)
    cb = fig.colorbar(img, ax=ax)
    ax.set_xlabel('time (seconds)', fontsize=12)
    ax.set_ylabel('range (km)', fontsize=12)
    ax.set_title(title)

    return fig 

Example 41

def __init__(self, filepath, monitor='val_loss', verbose=0,
                 save_best_only=False, save_weights_only=False,
                 mode='auto'):
        super(ModelCheckpoint, self).__init__()
        self.monitor = monitor
        self.verbose = verbose
        self.filepath = filepath
        self.save_best_only = save_best_only
        self.save_weights_only = save_weights_only

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('ModelCheckpoint mode %s is unknown, '
                          'fallback to auto mode.' % (mode),
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf 

Example 42

def on_train_begin(self, logs={}):
        self.wait = 0       # Allow instances to be re-used
        self.best = np.Inf if self.monitor_op == np.less else -np.Inf 

Example 43

def reset(self):
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode), RuntimeWarning)
            self.mode = 'auto'
        if self.mode == 'min' or (self.mode == 'auto' and 'acc' not in self.monitor):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4 

Example 44

def _get_bounds(self, ib, dimension):
        """ib == 0/1 means lower/upper bound, return a vector of length
        `dimension` """
        sign_ = 2 * ib - 1
        assert sign_**2 == 1
        if self.bounds is None or self.bounds[ib] is None:
            return array(dimension * [sign_ * np.Inf])
        res = []
        for i in range(dimension):
            res.append(self.bounds[ib][min([i, len(self.bounds[ib]) - 1])])
            if res[-1] is None:
                res[-1] = sign_ * np.Inf
        return array(res) 

Example 45

def __init__(self, asedb, kvp={}, data={}, batch_size=1,
                 selection=None, shuffle=True, prefetch=False,
                 block_size=150000,
                 capacity=5000, num_epochs=np.Inf, floatX=np.float32):
        super(ASEDataProvider, self).__init__(batch_size)

        self.asedb = asedb
        self.prefetch = prefetch
        self.selection = selection
        self.block_size = block_size
        self.shuffle = shuffle
        self.kvp = kvp
        self.data = data
        self.floatX = floatX
        self.feat_names = ['numbers', 'positions', 'cell',
                           'pbc'] + list(kvp.keys()) + list(data.keys())
        self.shapes = [(None,), (None, 3), (3, 3),
                       (3,)] + list(kvp.values()) + list(data.values())

        self.epoch = 0
        self.num_epochs = num_epochs
        self.n_rows = 0

        # initialize queue
        with connect(self.asedb) as con:
            row = list(con.select(self.selection, limit=1))[0]

        feats = self.convert_atoms(row)
        dtypes = [np.array(feat).dtype for feat in feats]
        self.queue = tf.FIFOQueue(capacity, dtypes)

        self.placeholders = [
            tf.placeholder(dt, name=name)
            for dt, name in zip(dtypes, self.feat_names)
            ]
        self.enqueue_op = self.queue.enqueue(self.placeholders)
        self.dequeue_op = self.queue.dequeue()

        self.preprocs = [] 

Example 46

def read(self):
			retval = self.func()
			if isinstance(retval,numbers.Number) and retval != np.Inf:self.value.setText('%s'%(self.applySIPrefix(retval,self.units) ))
			else: self.value.setText(str(retval)) 

Example 47

def read(self):
			retval = self.func()
			try:
				if isinstance(retval,numbers.Number) and retval != np.Inf:self.value.setText('%s'%(self.applySIPrefix(retval,self.units) ))
				else: self.value.setText(retval)
			except:self.value.setText(str(retval)) 

Example 48

def read(self):
			retval = self.func(self.optionBox.currentText())
			#if abs(retval)<1e4 and abs(retval)>.01:self.value.setText('%.3f %s '%(retval,self.units))
			#else: self.value.setText('%.3e %s '%(retval,self.units))
			if isinstance(retval,numbers.Number) and retval != np.Inf:self.value.setText('%s'%(self.applySIPrefix(retval,self.units) ))
			else: self.value.setText(str(retval))
			if self.linkFunc:
				self.linkFunc(retval) 

Example 49

def _safe_db(num, den):
    """Properly handle the potential +Inf db SIR, instead of raising a
    RuntimeWarning. Only denominator is checked because the numerator can never
    be 0.
    """
    if den == 0:
        return np.Inf
    return 10 * np.log10(num / den) 

Example 50

def _get_bounds(self, ib, dimension):
        """ib == 0/1 means lower/upper bound, return a vector of length
        `dimension` """
        sign_ = 2 * ib - 1
        assert sign_**2 == 1
        if self.bounds is None or self.bounds[ib] is None:
            return array(dimension * [sign_ * np.Inf])
        res = []
        for i in range(dimension):
            res.append(self.bounds[ib][min([i, len(self.bounds[ib]) - 1])])
            if res[-1] is None:
                res[-1] = sign_ * np.Inf
        return array(res) 
点赞