Python numpy.bool_() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def make_ragged_mask(ragged_index, mask):
    """Convert a boolean mask from dense to ragged format.

    Args:
        ragged_index: A [V+1]-shaped numpy array as returned by
            make_ragged_index.
        mask: A [V,...]-shaped numpy array of booleans.

    Returns:
        A [R,...]-shaped numpy array, where R = ragged_index[-1].
    """
    V = ragged_index.shape[0] - 1
    R = ragged_index[-1]
    assert mask.shape[0] == V
    assert mask.dtype == np.bool_
    ragged_mask = np.empty((R, ) + mask.shape[1:], dtype=np.bool_)
    for v in range(V):
        beg, end = ragged_index[v:v + 2]
        ragged_mask[beg:end] = mask[v]
    return ragged_mask 

Example 2

def df_type_to_str(i):
    '''
    Convert into simple datatypes from pandas/numpy types
    '''
    if isinstance(i, np.bool_):
        return bool(i)
    if isinstance(i, np.int_):
        return int(i)
    if isinstance(i, np.float):
        if np.isnan(i):
            return 'NaN'
        elif np.isinf(i):
            return str(i)
        return float(i)
    if isinstance(i, np.uint):
        return int(i)
    if type(i) == bytes:
        return i.decode('UTF-8')
    if isinstance(i, (tuple, list)):
        return str(i)
    if i is pd.NaT:  # not identified as a float null
        return 'NaN'
    return str(i) 

Example 3

def test_pts_in_bbs(self):
        pt = np.array([1, 2])
        bbs_a = np.array([1, 2, 3, 4])
        assert isinstance(pts_in_bbs(pt, bbs_a), np.bool_)
        assert pts_in_bbs(pt, bbs_a)
        pts = np.array([
            [1, 2],
            [2, 3],
            [3, 4]
        ])
        bbs_b = np.array([
            [1, 2, 3, 4],
            [5, 6, 7, 8],
            [2, 3, 4, 5]
        ])
        assert (pts_in_bbs(pts, bbs_b) == np.array([1, 0, 1], dtype=np.bool)).all() 

Example 4

def get_shapes_and_dtypes(data):
    shapes = {}
    dtypes = {}
    for k in data.keys():
        if isinstance(data[k][0], str):
            shapes[k] = []
            dtypes[k] = tf.string
        elif isinstance(data[k][0], np.ndarray):
            shapes[k] = data[k][0].shape
            dtypes[k] = tf.uint8
        elif isinstance(data[k][0], np.bool_):
            shapes[k] = []
            dtypes[k] = tf.string
        else:
            raise TypeError('Unknown data type', type(data[k][0]))
    return shapes, dtypes 

Example 5

def bool_to_str(val, **kwargs):
    """Convert input boolean to str

    :param val: value to be evaluated
    :returns: evaluated value
    :rtype: str
    """

    try:
        if pd.isnull(val):
            return kwargs['nan']
    except BaseException:
        pass
    if isinstance(val, np.bool_) or isinstance(val, bool):
        return str(val)
    if kwargs.get('convert_inconsistent_dtypes', True):
        if hasattr(val, '__str__'):
            return str(val)
    return kwargs['nan'] 

Example 6

def bool_to_int(val):
    """Convert input boolean to int

    :param val: value to be evaluated
    :returns: evaluated value
    :rtype: np.int64
    """

    try:
        if pd.isnull(val):
            return kwargs['nan']
    except BaseException:
        pass
    if isinstance(val, np.bool_) or isinstance(val, bool):
        return np.int64(val)
    if kwargs.get('convert_inconsistent_dtypes', False):
        try:
            return np.int64(val)
        except BaseException:
            pass
    return kwargs['nan'] 

Example 7

def test_allany(self):
        # Checks the any/all methods/functions.
        x = np.array([[0.13, 0.26, 0.90],
                      [0.28, 0.33, 0.63],
                      [0.31, 0.87, 0.70]])
        m = np.array([[True, False, False],
                      [False, False, False],
                      [True, True, False]], dtype=np.bool_)
        mx = masked_array(x, mask=m)
        mxbig = (mx > 0.5)
        mxsmall = (mx < 0.5)

        self.assertFalse(mxbig.all())
        self.assertTrue(mxbig.any())
        assert_equal(mxbig.all(0), [False, False, True])
        assert_equal(mxbig.all(1), [False, False, True])
        assert_equal(mxbig.any(0), [False, False, True])
        assert_equal(mxbig.any(1), [True, True, True])

        self.assertFalse(mxsmall.all())
        self.assertTrue(mxsmall.any())
        assert_equal(mxsmall.all(0), [True, True, False])
        assert_equal(mxsmall.all(1), [False, False, False])
        assert_equal(mxsmall.any(0), [True, True, False])
        assert_equal(mxsmall.any(1), [True, True, False]) 

Example 8

def test_allany_onmatrices(self):
        x = np.array([[0.13, 0.26, 0.90],
                      [0.28, 0.33, 0.63],
                      [0.31, 0.87, 0.70]])
        X = np.matrix(x)
        m = np.array([[True, False, False],
                      [False, False, False],
                      [True, True, False]], dtype=np.bool_)
        mX = masked_array(X, mask=m)
        mXbig = (mX > 0.5)
        mXsmall = (mX < 0.5)

        self.assertFalse(mXbig.all())
        self.assertTrue(mXbig.any())
        assert_equal(mXbig.all(0), np.matrix([False, False, True]))
        assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
        assert_equal(mXbig.any(0), np.matrix([False, False, True]))
        assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)

        self.assertFalse(mXsmall.all())
        self.assertTrue(mXsmall.any())
        assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
        assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
        assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
        assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T) 

Example 9

def _recursive_make_descr(datatype, newtype=bool_):
    "Private function allowing recursion in make_descr."
    # Do we have some name fields ?
    if datatype.names:
        descr = []
        for name in datatype.names:
            field = datatype.fields[name]
            if len(field) == 3:
                # Prepend the title to the name
                name = (field[-1], name)
            descr.append((name, _recursive_make_descr(field[0], newtype)))
        return descr
    # Is this some kind of composite a la (np.float,2)
    elif datatype.subdtype:
        mdescr = list(datatype.subdtype)
        mdescr[0] = _recursive_make_descr(datatype.subdtype[0], newtype)
        return tuple(mdescr)
    else:
        return newtype 

Example 10

def test_respect_dtype_singleton(self):
        # See gh-7203
        for dt in self.itype:
            lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1

            sample = self.rfunc(lbnd, ubnd, dtype=dt)
            self.assertEqual(sample.dtype, np.dtype(dt))

        for dt in (np.bool, np.int, np.long):
            lbnd = 0 if dt is np.bool else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1

            # gh-7284: Ensure that we get Python data types
            sample = self.rfunc(lbnd, ubnd, dtype=dt)
            self.assertFalse(hasattr(sample, 'dtype'))
            self.assertEqual(type(sample), dt) 

Example 11

def for_int_dtypes(name='dtype', no_bool=False):
    """Decorator that checks the fixture with integer and optionally bool dtypes.

    Args:
         name(str): Argument name to which specified dtypes are passed.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.

    dtypes to be tested are ``numpy.dtype('b')``, ``numpy.dtype('h')``,
    ``numpy.dtype('i')``, ``numpy.dtype('l')``, ``numpy.dtype('q')``,
    ``numpy.dtype('B')``, ``numpy.dtype('H')``, ``numpy.dtype('I')``,
    ``numpy.dtype('L')``, ``numpy.dtype('Q')``, and ``numpy.bool_`` (optional).

    .. seealso:: :func:`cupy.testing.for_dtypes`,
        :func:`cupy.testing.for_all_dtypes`
    """
    if no_bool:
        return for_dtypes(_int_dtypes, name=name)
    else:
        return for_dtypes(_int_bool_dtypes, name=name) 

Example 12

def for_all_dtypes_combination(names=('dtyes',),
                               no_float16=False, no_bool=False, full=None,
                               no_complex=False):
    """Decorator that checks the fixture with a product set of all dtypes.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_float16(bool): If ``True``, ``numpy.float16`` is
             omitted from candidate dtypes.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).
         no_complex(bool): If, True, ``numpy.complex64`` and
             ``numpy.complex128`` are omitted from candidate dtypes.

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    types = _make_all_dtypes(no_float16, no_bool, no_complex)
    return for_dtypes_combination(types, names, full) 

Example 13

def for_int_dtypes_combination(names=('dtype',), no_bool=False, full=None):
    """Decorator for parameterized test w.r.t. the product set of int and boolean.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    if no_bool:
        types = _int_dtypes
    else:
        types = _int_bool_dtypes
    return for_dtypes_combination(types, names, full) 

Example 14

def shaped_reverse_arange(shape, xp=cupy, dtype=numpy.float32):
    """Returns an array filled with decreasing numbers.

    Args:
         shape(tuple of int): Shape of returned ndarray.
         xp(numpy or cupy): Array module to use.
         dtype(dtype): Dtype of returned ndarray.

    Returns:
         numpy.ndarray or cupy.ndarray:
         The array filled with :math:`N, \\cdots, 1` with specified dtype
         with given shape, array module.
         Here, :math:`N` is the size of the returned array.
         If ``dtype`` is ``numpy.bool_``, evens (resp. odds) are converted to
         ``True`` (resp. ``False``).
    """
    dtype = numpy.dtype(dtype)
    size = internal.prod(shape)
    a = numpy.arange(size, 0, -1)
    if dtype == '?':
        a = a % 2 == 0
    elif dtype.kind == 'c':
        a = a + a * 1j
    return xp.array(a.astype(dtype).reshape(shape)) 

Example 15

def _fetch_documentation(version, base_url="https://spark.apache.org/docs"):
    doc_urls = [
        "{base_url}/{version}/configuration.html",
        "{base_url}/{version}/sql-programming-guide.html",
        "{base_url}/{version}/monitoring.html",
        "{base_url}/{version}/spark-standalone.html",
        "{base_url}/{version}/running-on-mesos.html",
        "{base_url}/{version}/running-on-yarn.html",
    ]

    for url in doc_urls:
        doc_url = url.format(version=version, base_url=base_url)
        # print(url)
        print("Loading spark properties from %s", doc_url)
        dfs = pd.read_html(doc_url, header=0)
        desired_cols = ["Property Name", "Default", "Meaning"]
        for df in dfs:
            if ("Property Name" in df) and ('Default' in df):
                for pn, default, desc in df[desired_cols].itertuples(index=False):
                    if type(default) == numpy.bool_:
                        default = bool(default)
                    yield pn, default, desc 

Example 16

def masked_matrix(matrix, all_zero=False):
    """
    Returns masked version of HicMatrix. By default, all entries in zero-count
    rows and columns are masked.

    :param matrix: A numpy 2D matrix
    :param all_zero: Mask ALL zero-count entries
    :returns: MaskedArray with zero entries masked
    """
    if all_zero:
        return np.ma.MaskedArray(matrix, mask=np.isclose(matrix, 0.))
    col_zero = np.isclose(np.sum(matrix, axis=0), 0.)
    row_zero = np.isclose(np.sum(matrix, axis=1), 0.)
    mask = np.zeros(matrix.shape, dtype=np.bool_)
    mask[:, col_zero] = np.True_
    mask[row_zero, :] = np.True_
    return np.ma.MaskedArray(matrix, mask=mask) 

Example 17

def _fix_type(value):
    """convert possible types to str, float, and bool"""
    # Because numpy floats can not be pickled to json
    if isinstance(value, string_types):
        return str(value)
    if isinstance(value, float_):
        return float(value)
    if isinstance(value, bool_):
        return bool(value)
    if isinstance(value, set):
        return list(value)
    if isinstance(value, Basic):
        return str(value)
    if hasattr(value, 'id'):
        return str(value.id)
    # if value is None:
    #     return ''
    return value 

Example 18

def __init__(self, match_fn=TermMatch, binary=True, dtype=np.bool_,
                 **cv_params):
        """initializes a Matching object

        :match_fn: A matching function of signature `docs, query`
                    -> indices of matching docs
        :binary: Store only binary term occurrences.
        :dtype: Data type of internal feature matrix
        :cv_params: Parameter for the count vectorizer such as lowercase=True

        """
        # RetrievalBase.__init__(self)

        self._match_fn = match_fn
        self._vect = CountVectorizer(binary=binary, dtype=dtype,
                                     **cv_params) 

Example 19

def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in (np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64):
            return int(obj)
        elif type(obj) in (np.bool_,):
            return bool(obj)
        elif type(obj) in (np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128):
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj) 

Example 20

def _init_discrete_filter_masks(self):
        """Create an array of passing ids for every discrete valued filter.
           :rtype: dict `{filter_name: {value: [ids]}}`"""
        translated = tuple(TRANSLATION.get(f,f) for f in ['variant_id']+DISCRETE_FILTER_NAMES)
        cursor = connections[self.db].cursor()
        cursor.execute("SELECT {} FROM variants".format(','.join(translated)))
        # Create a variants mask per couple (filter, value), with 1 at indices corresponding to passing variants
        variant_masks = {t:defaultdict(partial(np.zeros, self._N, dtype=np.bool_)) for t in DISCRETE_FILTER_NAMES}
        enum_values = {t:set() for t in DISCRETE_FILTER_NAMES}
        irange = range(1,len(translated))
        for row in cursor:
            vid = row[0]  # variant id
            for i in irange:
                val = row[i]
                fname = DISCRETE_FILTER_NAMES[i-1]
                variant_masks[fname][val][vid-1] = 1
                enum_values[fname].add(val)
        # Pack and cache the result
        for fname in DISCRETE_FILTER_NAMES:
            for val, mask in variant_masks[fname].items():
                mask = masking.pack(mask)
                self.save_mask(mask, fname, val)
        self.save_enum_values(enum_values)
        self._masks_ready = True 

Example 21

def test_allany(self):
        # Checks the any/all methods/functions.
        x = np.array([[0.13, 0.26, 0.90],
                      [0.28, 0.33, 0.63],
                      [0.31, 0.87, 0.70]])
        m = np.array([[True, False, False],
                      [False, False, False],
                      [True, True, False]], dtype=np.bool_)
        mx = masked_array(x, mask=m)
        mxbig = (mx > 0.5)
        mxsmall = (mx < 0.5)

        self.assertFalse(mxbig.all())
        self.assertTrue(mxbig.any())
        assert_equal(mxbig.all(0), [False, False, True])
        assert_equal(mxbig.all(1), [False, False, True])
        assert_equal(mxbig.any(0), [False, False, True])
        assert_equal(mxbig.any(1), [True, True, True])

        self.assertFalse(mxsmall.all())
        self.assertTrue(mxsmall.any())
        assert_equal(mxsmall.all(0), [True, True, False])
        assert_equal(mxsmall.all(1), [False, False, False])
        assert_equal(mxsmall.any(0), [True, True, False])
        assert_equal(mxsmall.any(1), [True, True, False]) 

Example 22

def test_allany_onmatrices(self):
        x = np.array([[0.13, 0.26, 0.90],
                      [0.28, 0.33, 0.63],
                      [0.31, 0.87, 0.70]])
        X = np.matrix(x)
        m = np.array([[True, False, False],
                      [False, False, False],
                      [True, True, False]], dtype=np.bool_)
        mX = masked_array(X, mask=m)
        mXbig = (mX > 0.5)
        mXsmall = (mX < 0.5)

        self.assertFalse(mXbig.all())
        self.assertTrue(mXbig.any())
        assert_equal(mXbig.all(0), np.matrix([False, False, True]))
        assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
        assert_equal(mXbig.any(0), np.matrix([False, False, True]))
        assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)

        self.assertFalse(mXsmall.all())
        self.assertTrue(mXsmall.any())
        assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
        assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
        assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
        assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T) 

Example 23

def _recursive_make_descr(datatype, newtype=bool_):
    "Private function allowing recursion in make_descr."
    # Do we have some name fields ?
    if datatype.names:
        descr = []
        for name in datatype.names:
            field = datatype.fields[name]
            if len(field) == 3:
                # Prepend the title to the name
                name = (field[-1], name)
            descr.append((name, _recursive_make_descr(field[0], newtype)))
        return descr
    # Is this some kind of composite a la (np.float,2)
    elif datatype.subdtype:
        mdescr = list(datatype.subdtype)
        mdescr[0] = _recursive_make_descr(datatype.subdtype[0], newtype)
        return tuple(mdescr)
    else:
        return newtype 

Example 24

def test_respect_dtype_singleton(self):
        # See gh-7203
        for dt in self.itype:
            lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1

            sample = self.rfunc(lbnd, ubnd, dtype=dt)
            self.assertEqual(sample.dtype, np.dtype(dt))

        for dt in (np.bool, np.int, np.long):
            lbnd = 0 if dt is np.bool else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1

            # gh-7284: Ensure that we get Python data types
            sample = self.rfunc(lbnd, ubnd, dtype=dt)
            self.assertFalse(hasattr(sample, 'dtype'))
            self.assertEqual(type(sample), dt) 

Example 25

def handle_comparison_units(inps, units, ufunc, ret_class, raise_error=False):
    if units[0] != units[1]:
        u1d = units[0].is_dimensionless
        u2d = units[1].is_dimensionless
        any_nonzero = [np.any(inps[0]), np.any(inps[1])]
        if any_nonzero[0] == np.bool_(False):
            units = (units[1], units[1])
        elif any_nonzero[1] == np.bool_(False):
            units = (units[0], units[0])
        elif not any([u1d, u2d]):
            if not units[0].same_dimensions_as(units[1]):
                raise YTUnitOperationError(ufunc, *units)
            else:
                if raise_error:
                    raise YTUfuncUnitError(ufunc, *units)
                inps = (inps[0], ret_class(inps[1]).to(
                    ret_class(inps[0]).units))
    return inps, units 

Example 26

def apply_fast_gt(value_left, value_right, index_left, index_right):
    index = index_left * index_right
    if len(value_left) > len(value_right):
        result = np.empty(len(value_left), dtype=np.bool_)
    else:
        result = np.empty(len(value_right), dtype=np.bool_)

    cursor_result = 0
    cursor_left = 0
    cursor_right = 0
    for il, ir in zip(index_left, index_right):
        if il & ir:
            result[cursor_result] = value_left[cursor_left] >\
                                    value_right[cursor_right]
            cursor_result += 1
            cursor_left += 1
            cursor_right += 1

        elif il:
            cursor_left += 1

        elif ir:
            cursor_right += 1

    return result[:cursor_result], index 

Example 27

def apply_fast_ge(value_left, value_right, index_left, index_right):
    index = index_left * index_right
    if len(value_left) > len(value_right):
        result = np.empty(len(value_left), dtype=np.bool_)
    else:
        result = np.empty(len(value_left), dtype=np.bool_)

    cursor_result = 0
    cursor_left = 0
    cursor_right = 0
    for il, ir in zip(index_left, index_right):
        if il & ir:
            result[cursor_result] = value_left[cursor_left] >=\
                                    value_right[cursor_right]
            cursor_result += 1
            cursor_left += 1
            cursor_right += 1

        elif il:
            cursor_left += 1

        elif ir:
            cursor_right += 1

    return result[:cursor_result], index 

Example 28

def apply_fast_lt(value_left, value_right, index_left, index_right):
    index = index_left * index_right
    if len(value_left) > len(value_right):
        result = np.empty(len(value_left), dtype=np.bool_)
    else:
        result = np.empty(len(value_right), dtype=np.bool_)

    cursor_result = 0
    cursor_left = 0
    cursor_right = 0
    for il, ir in zip(index_left, index_right):
        if il & ir:
            result[cursor_result] = value_left[cursor_left] <\
                                    value_right[cursor_right]
            cursor_result += 1
            cursor_left += 1
            cursor_right += 1

        elif il:
            cursor_left += 1

        elif ir:
            cursor_right += 1

    return result[:cursor_result], index 

Example 29

def apply_fast_le(value_left, value_right, index_left, index_right):
    index = index_left * index_right
    if len(value_left) > len(value_right):
        result = np.empty(len(value_left), dtype=np.bool_)
    else:
        result = np.empty(len(value_right), dtype=np.bool_)

    cursor_result = 0
    cursor_left = 0
    cursor_right = 0
    for il, ir in zip(index_left, index_right):
        if il & ir:
            result[cursor_result] = value_left[cursor_left] <=\
                                    value_right[cursor_right]
            cursor_result += 1
            cursor_left += 1
            cursor_right += 1

        elif il:
            cursor_left += 1

        elif ir:
            cursor_right += 1

    return result[:cursor_result], index 

Example 30

def isin_sorted(base, test):
    result = np.empty(base.shape, dtype=np.bool_)
    cursor_result = 0
    cursor_test = 0
    for elem in base:
        result[cursor_result] = False
        for i in range(len(test)):
            if elem < test[cursor_test]:
                break
            elif elem == test[cursor_test]:
                result[cursor_result] = True
                break
            else:
                # array exhausted
                if cursor_test == len(test) - 1:
                    break
                # Advance test array
                else:
                    cursor_test += 1

        cursor_result += 1

    return result 

Example 31

def for_int_dtypes(name='dtype', no_bool=False):
    """Decorator that checks the fixture with integer and optionally bool dtypes.

    Args:
         name(str): Argument name to which specified dtypes are passed.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.

    dtypes to be tested are ``numpy.dtype('b')``, ``numpy.dtype('h')``,
    ``numpy.dtype('i')``, ``numpy.dtype('l')``, ``numpy.dtype('q')``,
    ``numpy.dtype('B')``, ``numpy.dtype('H')``, ``numpy.dtype('I')``,
    ``numpy.dtype('L')``, ``numpy.dtype('Q')``, and ``numpy.bool_`` (optional).

    .. seealso:: :func:`cupy.testing.for_dtypes`,
        :func:`cupy.testing.for_all_dtypes`
    """
    if no_bool:
        return for_dtypes(_int_dtypes, name=name)
    else:
        return for_dtypes(_int_bool_dtypes, name=name) 

Example 32

def for_all_dtypes_combination(names=['dtyes'],
                               no_float16=False, no_bool=False, full=None):
    """Decorator that checks the fixture with a product set of all dtypes.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_float16(bool): If ``True``, ``numpy.float16`` is
             omitted from candidate dtypes.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    types = _make_all_dtypes(no_float16, no_bool)
    return for_dtypes_combination(types, names, full) 

Example 33

def for_int_dtypes_combination(names=['dtype'], no_bool=False, full=None):
    """Decorator for parameterized test w.r.t. the product set of int and boolean.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    if no_bool:
        types = _int_dtypes
    else:
        types = _int_bool_dtypes
    return for_dtypes_combination(types, names, full) 

Example 34

def shaped_arange(shape, xp=cupy, dtype=numpy.float32):
    """Returns an array with given shape, array module, and dtype.

    Args:
         shape(tuple of int): Shape of returned ndarray.
         xp(numpy or cupy): Array module to use.
         dtype(dtype): Dtype of returned ndarray.

    Returns:
         numpy.ndarray or cupy.ndarray:
         The array filled with :math:`1, \cdots, N` with specified dtype
         with given shape, array module. Here, :math:`N` is
         the size of the returned array.
         If ``dtype`` is ``numpy.bool_``, evens (resp. odds) are converted to
         ``True`` (resp. ``False``).

    """
    a = numpy.arange(1, internal.prod(shape) + 1, 1)
    if numpy.dtype(dtype).type == numpy.bool_:
        return xp.array((a % 2 == 0).reshape(shape))
    else:
        return xp.array(a.astype(dtype).reshape(shape)) 

Example 35

def __is_adversarial(self, image, predictions):
        """Interface to criterion.is_adverarial that calls
        __new_adversarial if necessary.

        Parameters
        ----------
        predictions : :class:`numpy.ndarray`
            A vector with the pre-softmax predictions for some image.
        label : int
            The label of the unperturbed reference image.

        """
        is_adversarial = self.__criterion.is_adversarial(
            predictions, self.__original_class)
        if is_adversarial:
            is_best, distance = self.__new_adversarial(image)
        else:
            is_best = False
            distance = None
        assert isinstance(is_adversarial, bool) or \
            isinstance(is_adversarial, np.bool_)
        return is_adversarial, is_best, distance 

Example 36

def is_bool_indexer(key):
    if isinstance(key, (ABCSeries, np.ndarray)):
        if key.dtype == np.object_:
            key = np.asarray(_values_from_object(key))

            if not lib.is_bool_array(key):
                if isnull(key).any():
                    raise ValueError('cannot index with vector containing '
                                     'NA / NaN values')
                return False
            return True
        elif key.dtype == np.bool_:
            return True
    elif isinstance(key, list):
        try:
            arr = np.asarray(key)
            return arr.dtype == np.bool_ and len(arr) == len(key)
        except TypeError:  # pragma: no cover
            return False

    return False 

Example 37

def test_empty_fancy(self):
        empty_farr = np.array([], dtype=np.float_)
        empty_iarr = np.array([], dtype=np.int_)
        empty_barr = np.array([], dtype=np.bool_)

        # pd.DatetimeIndex is excluded, because it overrides getitem and should
        # be tested separately.
        for idx in [self.strIndex, self.intIndex, self.floatIndex]:
            empty_idx = idx.__class__([])

            self.assertTrue(idx[[]].identical(empty_idx))
            self.assertTrue(idx[empty_iarr].identical(empty_idx))
            self.assertTrue(idx[empty_barr].identical(empty_idx))

            # np.ndarray only accepts ndarray of int & bool dtypes, so should
            # Index.
            self.assertRaises(IndexError, idx.__getitem__, empty_farr) 

Example 38

def test_bools(self):
        arr = np.array([True, False, True, True, True], dtype='O')
        result = lib.infer_dtype(arr)
        self.assertEqual(result, 'boolean')

        arr = np.array([np.bool_(True), np.bool_(False)], dtype='O')
        result = lib.infer_dtype(arr)
        self.assertEqual(result, 'boolean')

        arr = np.array([True, False, True, 'foo'], dtype='O')
        result = lib.infer_dtype(arr)
        self.assertEqual(result, 'mixed')

        arr = np.array([True, False, True], dtype=bool)
        result = lib.infer_dtype(arr)
        self.assertEqual(result, 'boolean') 

Example 39

def test_to_frame_mixed(self):
        panel = self.panel.fillna(0)
        panel['str'] = 'foo'
        panel['bool'] = panel['ItemA'] > 0

        lp = panel.to_frame()
        wp = lp.to_panel()
        self.assertEqual(wp['bool'].values.dtype, np.bool_)
        # Previously, this was mutating the underlying index and changing its
        # name
        assert_frame_equal(wp['bool'], panel['bool'], check_names=False)

        # GH 8704
        # with categorical
        df = panel.to_frame()
        df['category'] = df['str'].astype('category')

        # to_panel
        # TODO: this converts back to object
        p = df.to_panel()
        expected = panel.copy()
        expected['category'] = 'foo'
        assert_panel_equal(p, expected) 

Example 40

def test_select_dtypes_exclude_include(self):
        df = DataFrame({'a': list('abc'),
                        'b': list(range(1, 4)),
                        'c': np.arange(3, 6).astype('u1'),
                        'd': np.arange(4.0, 7.0, dtype='float64'),
                        'e': [True, False, True],
                        'f': pd.date_range('now', periods=3).values})
        exclude = np.datetime64,
        include = np.bool_, 'integer'
        r = df.select_dtypes(include=include, exclude=exclude)
        e = df[['b', 'c', 'e']]
        assert_frame_equal(r, e)

        exclude = 'datetime',
        include = 'bool', 'int64', 'int32'
        r = df.select_dtypes(include=include, exclude=exclude)
        e = df[['b', 'e']]
        assert_frame_equal(r, e) 

Example 41

def test_where(self):
        def testit():
            for f in [self.frame, self.frame2, self.mixed, self.mixed2]:

                for cond in [True, False]:

                    c = np.empty(f.shape, dtype=np.bool_)
                    c.fill(cond)
                    result = expr.where(c, f.values, f.values + 1)
                    expected = np.where(c, f.values, f.values + 1)
                    tm.assert_numpy_array_equal(result, expected)

        expr.set_use_numexpr(False)
        testit()
        expr.set_use_numexpr(True)
        expr.set_numexpr_threads(1)
        testit()
        expr.set_numexpr_threads()
        testit() 

Example 42

def test_default_type_conversion(self):
        df = sql.read_sql_table("types_test_data", self.conn)

        self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating),
                        "FloatCol loaded with incorrect type")
        self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer),
                        "IntCol loaded with incorrect type")
        self.assertTrue(issubclass(df.BoolCol.dtype.type, np.bool_),
                        "BoolCol loaded with incorrect type")

        # Int column with NA values stays as float
        self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating),
                        "IntColWithNull loaded with incorrect type")
        # Bool column with NA values becomes object
        self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.object),
                        "BoolColWithNull loaded with incorrect type") 

Example 43

def test_allany(self):
        # Checks the any/all methods/functions.
        x = np.array([[0.13, 0.26, 0.90],
                      [0.28, 0.33, 0.63],
                      [0.31, 0.87, 0.70]])
        m = np.array([[True, False, False],
                      [False, False, False],
                      [True, True, False]], dtype=np.bool_)
        mx = masked_array(x, mask=m)
        mxbig = (mx > 0.5)
        mxsmall = (mx < 0.5)

        self.assertFalse(mxbig.all())
        self.assertTrue(mxbig.any())
        assert_equal(mxbig.all(0), [False, False, True])
        assert_equal(mxbig.all(1), [False, False, True])
        assert_equal(mxbig.any(0), [False, False, True])
        assert_equal(mxbig.any(1), [True, True, True])

        self.assertFalse(mxsmall.all())
        self.assertTrue(mxsmall.any())
        assert_equal(mxsmall.all(0), [True, True, False])
        assert_equal(mxsmall.all(1), [False, False, False])
        assert_equal(mxsmall.any(0), [True, True, False])
        assert_equal(mxsmall.any(1), [True, True, False]) 

Example 44

def test_empty_positions(self):
        """
        make sure all the empty position stats return a numeric 0

        Originally this bug was due to np.dot([], []) returning
        np.bool_(False)
        """
        pt = perf.PositionTracker(self.env.asset_finder)
        pos_stats = pt.stats()

        stats = [
            'net_value',
            'net_exposure',
            'gross_value',
            'gross_exposure',
            'short_value',
            'short_exposure',
            'shorts_count',
            'long_value',
            'long_exposure',
            'longs_count',
        ]
        for name in stats:
            val = getattr(pos_stats, name)
            self.assertEquals(val, 0)
            self.assertNotIsInstance(val, (bool, np.bool_)) 

Example 45

def eq(a, b):
    """The great missing equivalence function: Guaranteed evaluation to a single bool value."""
    if a is b:
        return True
        
    try:
        with warnings.catch_warnings(module=np):  # ignore numpy futurewarning (numpy v. 1.10)
            e = a==b
    except ValueError:
        return False
    except AttributeError: 
        return False
    except:
        print('failed to evaluate equivalence for:')
        print("  a:", str(type(a)), str(a))
        print("  b:", str(type(b)), str(b))
        raise
    t = type(e)
    if t is bool:
        return e
    elif t is np.bool_:
        return bool(e)
    elif isinstance(e, np.ndarray) or (hasattr(e, 'implements') and e.implements('MetaArray')):
        try:   ## disaster: if a is an empty array and b is not, then e.all() is True
            if a.shape != b.shape:
                return False
        except:
            return False
        if (hasattr(e, 'implements') and e.implements('MetaArray')):
            return e.asarray().all()
        else:
            return e.all()
    else:
        raise Exception("== operator returned type %s" % str(type(e))) 

Example 46

def eq(a, b):
    """The great missing equivalence function: Guaranteed evaluation to a single bool value."""
    if a is b:
        return True
        
    try:
        with warnings.catch_warnings(module=np):  # ignore numpy futurewarning (numpy v. 1.10)
            e = a==b
    except ValueError:
        return False
    except AttributeError: 
        return False
    except:
        print('failed to evaluate equivalence for:')
        print("  a:", str(type(a)), str(a))
        print("  b:", str(type(b)), str(b))
        raise
    t = type(e)
    if t is bool:
        return e
    elif t is np.bool_:
        return bool(e)
    elif isinstance(e, np.ndarray) or (hasattr(e, 'implements') and e.implements('MetaArray')):
        try:   ## disaster: if a is an empty array and b is not, then e.all() is True
            if a.shape != b.shape:
                return False
        except:
            return False
        if (hasattr(e, 'implements') and e.implements('MetaArray')):
            return e.asarray().all()
        else:
            return e.all()
    else:
        raise Exception("== operator returned type %s" % str(type(e))) 

Example 47

def only_bool(val):
    """ Pass input value or array only if it is a bool

    :param val: value to be evaluated
    :returns: evaluated value
    :rtype: np.bool or np.ndarray
    """

    if isinstance(val, np.bool_) or isinstance(val, bool):
        return np.bool(val)
    elif hasattr(val, '__iter__') and not isinstance(val, str):
        return np.asarray(list(filter(lambda s: isinstance(s, np.bool_) or isinstance(s, bool), val)))

    return None 

Example 48

def determine_preferred_dtype(dtype_cnt):
    """Determine preferred column data type"""

    # get sorted type counts for column
    type_cnts = dtype_cnt.most_common()
    if not type_cnts:
        return None

    # determine preferred type from types with the highest count
    type_order = {str: '0', np.float64: '1', np.int64: '2', np.bool_: '3'}
    return sorted((cnt[0] for cnt in type_cnts if cnt[1] == type_cnts[0][1]),
                  key=lambda t: type_order.get(t, t.__name__))[0] 

Example 49

def test_boolean(self):
        p = Parameter('test_bool', 'boolean')
        s = p.random_sample()
        self.assertTrue(isinstance(s, np.bool_)) 

Example 50

def test_bool(self,level=rlevel):
        # Ticket #60
        np.bool_(1)  # Should succeed 
点赞