The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def write_data_frame(fn, df): ''' Write the pandas dataframe object to an HDF5 file. Each column is written as a single 1D dataset at the top level of the HDF5 file, using the native pandas datatype''' # Always write a fresh file -- the 'w' argument to h5py.File is supposed to truncate an existing file, but it doesn't appear to work correctly if os.path.exists(fn): os.remove(fn) f = h5py.File(fn, "w") # To preserve column order, write columns to an attribute column_names = np.array(list(df.columns)) f.attrs.create("column_names", column_names) for col in df.columns: write_data_column(f, df[col]) f.close()
Example 2
def append_data_frame(fn, df): ''' Write the pandas dataframe object to an HDF5 file. Each column is written as a single 1D dataset at the top level of the HDF5 file, using the native pandas datatype''' if not os.path.exists(fn): write_data_frame(fn, df) return f = h5py.File(fn, "a") column_names = f.attrs.get("column_names") for col_name in column_names: ds = f[col_name] col = df[col_name] append_data_column(ds, col) f.close()
Example 3
def compile(self, root_block_like): """Compiles a block, and sets it to the root. Args: root_block_like: A block or an object that can be converted to a block by [`td.convert_to_block`](#td.convert_to_block). Must have at least one output or metric tensor. The output type may not contain any Sequence or PyObject types. Returns: `self` Raises: RuntimeError: If `init_loom()` has already been called. TypeError: If `root_block_like` cannot be converted to a block. TypeError: If `root_block_like` fails to compile. TypeError: If `root_block_like` has no output or metric tensors. TypeError: If `root_block_like` has an invalid output type. """ if self.is_loom_initialized: raise RuntimeError('Loom has already been initialized.') return self._setup(root_block_like, interactive_mode=False)
Example 4
def test_wrap(self): class with_wrap(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): r = with_wrap() r.arr = arr r.context = context return r a = with_wrap() x = ncu.minimum(a, a) assert_equal(x.arr, np.zeros(1)) func, args, i = x.context self.assertTrue(func is ncu.minimum) self.assertEqual(len(args), 2) assert_equal(args[0], a) assert_equal(args[1], a) self.assertEqual(i, 0)
Example 5
def test_dot_override(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b)
Example 6
def test_ufunc_override_normalize_signature(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return # gh-5674 class SomeClass(object): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): return kw a = SomeClass() kw = np.add(a, [1]) assert_('sig' not in kw and 'signature' not in kw) kw = np.add(a, [1], sig='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') kw = np.add(a, [1], signature='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i')
Example 7
def test_object_logical(self): a = np.array([3, None, True, False, "test", ""], dtype=object) assert_equal(np.logical_or(a, None), np.array([x or None for x in a], dtype=object)) assert_equal(np.logical_or(a, True), np.array([x or True for x in a], dtype=object)) assert_equal(np.logical_or(a, 12), np.array([x or 12 for x in a], dtype=object)) assert_equal(np.logical_or(a, "blah"), np.array([x or "blah" for x in a], dtype=object)) assert_equal(np.logical_and(a, None), np.array([x and None for x in a], dtype=object)) assert_equal(np.logical_and(a, True), np.array([x and True for x in a], dtype=object)) assert_equal(np.logical_and(a, 12), np.array([x and 12 for x in a], dtype=object)) assert_equal(np.logical_and(a, "blah"), np.array([x and "blah" for x in a], dtype=object)) assert_equal(np.logical_not(a), np.array([not x for x in a], dtype=object)) assert_equal(np.logical_or.reduce(a), 3) assert_equal(np.logical_and.reduce(a), None)
Example 8
def test_dtype_with_object(self): # Test using an explicit dtype with an object data = """ 1; 2001-01-01 2; 2002-01-31 """ ndtype = [('idx', int), ('code', np.object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) control = np.array( [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], dtype=ndtype) assert_equal(test, control) ndtype = [('nest', [('idx', int), ('code', np.object)])] try: test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) except NotImplementedError: pass else: errmsg = "Nested dtype involving objects should be supported." raise AssertionError(errmsg)
Example 9
def test_gft_using_filename(self): # Test that we can load data from a filename as well as a file # object tgt = np.arange(6).reshape((2, 3)) if sys.version_info[0] >= 3: # python 3k is known to fail for '\r' linesep = ('\n', '\r\n') else: linesep = ('\n', '\r\n', '\r') for sep in linesep: data = '0 1 2' + sep + '3 4 5' with temppath() as name: with open(name, 'w') as f: f.write(data) res = np.genfromtxt(name) assert_array_equal(res, tgt)
Example 10
def test_generic_rank3(self): """Test rank 3 array for all dtypes.""" def foo(t): a = np.empty((4, 2, 3), t) a.fill(1) b = a.copy() c = a.copy() c.fill(0) self._test_equal(a, b) self._test_not_equal(c, b) # Test numeric types and object for t in '?bhilqpBHILQPfdgFDG': foo(t) # Test strings for t in ['S1', 'U1']: foo(t)
Example 11
def test_TakeTransposeInnerOuter(self): # Test of take, transpose, inner, outer products x = arange(24) y = np.arange(24) x[5:6] = masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))) assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)) assert_equal(np.inner(filled(x, 0), filled(y, 0)), inner(x, y)) assert_equal(np.outer(filled(x, 0), filled(y, 0)), outer(x, y)) y = array(['abc', 1, 'def', 2, 3], object) y[2] = masked t = take(y, [0, 3, 4]) assert_(t[0] == 'abc') assert_(t[1] == 2) assert_(t[2] == 3)
Example 12
def _parase_fq_factor(code, start, end): symbol = _code_to_symbol(code) request = Request(ct.HIST_FQ_FACTOR_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], symbol)) text = urlopen(request, timeout=10).read() text = text[1:len(text)-1] text = text.decode('utf-8') if ct.PY3 else text text = text.replace('{_', '{"') text = text.replace('total', '"total"') text = text.replace('data', '"data"') text = text.replace(':"', '":"') text = text.replace('",_', '","') text = text.replace('_', '-') text = json.loads(text) df = pd.DataFrame({'date':list(text['data'].keys()), 'factor':list(text['data'].values())}) df['date'] = df['date'].map(_fun_except) # for null case if df['date'].dtypes == np.object: df['date'] = df['date'].astype(np.datetime64) df = df.drop_duplicates('date') df['factor'] = df['factor'].astype(float) return df
Example 13
def _parase_fq_factor(code, start, end): symbol = _code_to_symbol(code) request = Request(ct.HIST_FQ_FACTOR_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], symbol)) text = urlopen(request, timeout=10).read() text = text[1:len(text)-1] text = text.replace('{_', '{"') text = text.replace('total', '"total"') text = text.replace('data', '"data"') text = text.replace(':"', '":"') text = text.replace('",_', '","') text = text.replace('_', '-') text = json.loads(text) df = pd.DataFrame({'date':list(text['data'].keys()), 'factor':list(text['data'].values())}) df['date'] = df['date'].map(_fun_except) # for null case if df['date'].dtypes == np.object: df['date'] = df['date'].astype(np.datetime64) df = df.drop_duplicates('date') df['factor'] = df['factor'].astype(float) return df
Example 14
def least_square_lagged_regression(u_array): """ u_array, q, T+1, p """ q,T,p = u_array.shape T -= 1 # t0, t1 term is t1 regressed on t0 lagged_coef_mat = np.zeros([T,T],dtype = np.object) for t0 in range(T): for t1 in range(t0,T): tmp_coef = np.zeros([p,p]) for i in range(p): # least square regression u_t+h[i] u_t tmp_y = u_array[:,t1+1,i] tmp_x = u_array[:,t0,:] # (X'X)^{-1} X' Y tmp_coef[i,:] = np.linalg.inv(tmp_x.T.dot(tmp_x)).dot(tmp_x.T.dot(tmp_y)) lagged_coef_mat[t0,t1] = tmp_coef return lagged_coef_mat
Example 15
def redraw(self): column_index1 = self.combo_box1.GetSelection() if column_index1 != wx.NOT_FOUND and column_index1 != 0: # subtract one to remove the neutral selection index column_index1 -= 1 df = self.df_list_ctrl.get_filtered_df() if len(df) > 0: self.axes.clear() column = df.iloc[:, column_index1] is_string_col = column.dtype == np.object and isinstance(column.values[0], str) if is_string_col: value_counts = column.value_counts().sort_index() value_counts.plot(kind='bar', ax=self.axes) else: self.axes.hist(column.values, bins=100) self.canvas.draw()
Example 16
def Leaflet_finder(block, traj, cutoff, len_atom, len_chunks, block_id=None): id_0 = block_id[0] id_1 = block_id[1] block[:,:] = cdist(np.load(traj, mmap_mode='r')[id_0*len_chunks:(id_0+1)*len_chunks], np.load(traj, mmap_mode='r')[id_1*len_chunks:(id_1+1)*len_chunks]) <= cutoff adj_list = np.where(block[:,:] == True) adj_list = np.vstack(adj_list) adj_list[0] = adj_list[0]+id_0*len_chunks adj_list[1] = adj_list[1]+id_1*len_chunks if adj_list.shape[1] == 0: adj_list=np.zeros((2,1)) graph = nx.Graph() edges = [(adj_list[0,k],adj_list[1,k]) for k in range(0,adj_list.shape[1])] graph.add_edges_from(edges) l = np.array({i: item for i, item in enumerate(sorted(nx.connected_components(graph)))}, dtype=np.object).reshape(1,1) return l
Example 17
def Leaflet_finder(block, traj, cutoff, len_atom, len_chunks, block_id=None): id_0 = block_id[0] id_1 = block_id[1] block[:,:] = cdist(np.load(traj, mmap_mode='r')[id_0*len_chunks:(id_0+1)*len_chunks], np.load(traj, mmap_mode='r')[id_1*len_chunks:(id_1+1)*len_chunks]) <= cutoff adj_list = np.where(block[:,:] == True) adj_list = np.vstack(adj_list) adj_list[0] = adj_list[0]+id_0*len_chunks adj_list[1] = adj_list[1]+id_1*len_chunks if adj_list.shape[1] == 0: adj_list=np.zeros((2,1)) graph = nx.Graph() edges = [(adj_list[0,k],adj_list[1,k]) for k in range(0,adj_list.shape[1])] graph.add_edges_from(edges) l = np.array({i: item for i, item in enumerate(sorted(nx.connected_components(graph)))}, dtype=np.object).reshape(1,1) return l
Example 18
def get_samples(desired_data): all_samples = [] for data in desired_data: temperatures = np.atleast_1d(data['conditions']['T']) num_configs = np.array(data['solver'].get('sublattice_configurations'), dtype=np.object).shape[0] site_fractions = data['solver'].get('sublattice_occupancies', [[1]] * num_configs) site_fraction_product = [reduce(operator.mul, list(itertools.chain(*[np.atleast_1d(f) for f in fracs])), 1) for fracs in site_fractions] # TODO: Subtle sorting bug here, if the interactions aren't already in sorted order... interaction_product = [] for fracs in site_fractions: interaction_product.append(float(reduce(operator.mul, [f[0] - f[1] for f in fracs if isinstance(f, list) and len(f) == 2], 1))) if len(interaction_product) == 0: interaction_product = [0] comp_features = zip(site_fraction_product, interaction_product) all_samples.extend(list(itertools.product(temperatures, comp_features))) return all_samples
Example 19
def _shift_reference_state(desired_data, feature_transform, fixed_model): """ Shift data to a new common reference state. """ total_response = [] for dataset in desired_data: values = np.asarray(dataset['values'], dtype=np.object) if dataset['solver'].get('sublattice_occupancies', None) is not None: value_idx = 0 for occupancy, config in zip(dataset['solver']['sublattice_occupancies'], dataset['solver']['sublattice_configurations']): if dataset['output'].endswith('_FORM'): pass elif dataset['output'].endswith('_MIX'): values[..., value_idx] += feature_transform(fixed_model.models['ref']) pass else: raise ValueError('Unknown property to shift: {}'.format(dataset['output'])) value_idx += 1 total_response.append(values.flatten()) return total_response
Example 20
def get_his_std( data_pixel, rois, max_cts=None): ''' YG. Dev 16, 2016 Calculate the photon histogram for multi-q by giving Parameters: data_pixel: multi-D array, for the photon counts max_cts: for bin max, bin will be [0,1,2,..., max_cts] Return: bins his std ''' if max_cts is None: max_cts = np.max( data_pixel ) + 1 qind, pixelist = roi.extract_label_indices( rois ) noqs = len( np.unique(qind) ) his= np.zeros( [noqs], dtype=np.object) std= np.zeros_like( his, dtype=np.object) kmean = np.zeros_like( his, dtype=np.object) for qi in range(noqs): pixelist_qi = np.where( qind == qi+1)[0] #print(qi, max_cts) bins, his[qi], std[qi], kmean[qi] = get_his_std_qi( data_pixel[:,pixelist_qi] , max_cts) return bins, his, std, kmean
Example 21
def get_his_std_from_pds( spec_pds, his_shapes=None): '''Y.G.Dec 22, 2016 get spec_his, spec_std from a pandas.dataframe file Parameters: spec_pds: pandas.dataframe, contains columns as 'count', spec_his (as 'his_level_0_q_0'), spec_std (as 'std_level_0_q_0') his_shapes: the shape of the returned spec_his, if None, shapes = (2, (len(spec_pds.keys)-1)/4) ) Return: spec_his: array, shape as his_shapes spec_std, array, shape as his_shapes ''' spkeys = list( spec_pds.keys() ) if his_shapes is None: M,N = 2, int( (len(spkeys)-1)/4 ) #print(M,N) spec_his = np.zeros( [M,N], dtype=np.object) spec_std = np.zeros( [M,N], dtype=np.object) for i in range(M): for j in range(N): spec_his[i,j] = np.array( spec_pds[ spkeys[1+ i*N + j] ][ ~np.isnan( spec_pds[ spkeys[1+ i*N + j] ] )] ) spec_std[i,j] = np.array( spec_pds[ spkeys[1+ 2*N + i*N + j]][ ~np.isnan( spec_pds[ spkeys[1+ 2*N + i*N + j]] )] ) return spec_his, spec_std
Example 22
def coords_edges(self, edges): ''' Returns a list of coordinates head and tail points for all edge in edges ''' res = np.empty((len(edges)), dtype=object) for r, e in zip(range(len(edges)), edges): if e[0] is None: e[0] = 0 res[r] = self.coords_edge(e) if len(res[r][0]) != 2: print 'there is an error with the edges' import pdb pdb.set_trace() # v = np.vectorize(self.coords_edge, otypes=[np.object]) # res = v(edges) return res
Example 23
def DFS(self, start, fs=None): ''' Returns the DFS tree for the graph starting from start ''' to_be_processed = np.array([start], dtype=np.int) known = np.array([], dtype=np.int) tree = np.array([], dtype=object) if fs is None: fs = self.FSs while len(to_be_processed) > 0: # pop current_node = to_be_processed[0] to_be_processed = np.delete(to_be_processed, 0) for node in fs[current_node]: if node not in known: known = np.append(known, node) tree = np.append(tree, None) tree[-1] = (current_node, node) # push to_be_processed = np.insert(to_be_processed, 0, node) return tree
Example 24
def prim(self): ''' Returns Prim's minimum spanninng tree ''' big_f = set([]) costs = np.empty((self.n), dtype=object) costs[:] = np.max(self.costs) + 1 big_e = np.empty((self.n), dtype=object) big_q = set(range(self.n)) tree_edges = np.array([], dtype=object) while len(big_q) > 0: v = np.argmin(costs) big_q.remove(v) costs[v] = np.Infinity big_f.add(v) if big_e[v] is not None: tree_edges = np.append(tree_edges, None) tree_edges[-1] = (big_e[v], v) for i, w in zip(range(len(self.FSs[v])), self.FSs[v]): if w in big_q and self.FS_costs[v][i] < costs[w]: costs[w] = self.FS_costs[v][i] big_e[w] = v return tree_edges
Example 25
def connect_graphs(self, sets_orig, edges_orig): ''' Returns the edges needed to connect unconnected graphs (sets of nodes) given a set of sets of nodes, select the master_graph (the biggest) one and search the shortest edges to connect the other sets of nodes ''' master_graph = max(sets_orig, key=len) sets = sets_orig.copy() edges = np.array([], dtype=object) sets.remove(master_graph) master_tree = cKDTree(self.nodes[list(master_graph)]) for s in sets: x = np.array(list(s)) nearests = np.array([master_tree.query(self.nodes[v]) for v in x]) tails = nearests[ nearests[:, 0].argsort()][:, 1][:self.max_neighbours] heads = x[nearests[:, 0].argsort()][:self.max_neighbours] for head, tail in zip(heads, tails): edges = np.append(edges, None) edges[-1] = (head, tail) edges = np.append(edges, None) edges[-1] = (tail, head) return edges
Example 26
def coords_edges(self, edges): ''' Returns a list of coordinates head and tail points for all edge in edges ''' res = np.empty((len(edges)), dtype=object) for r, e in zip(range(len(edges)), edges): if e[0] is None: e[0] = 0 res[r] = self.coords_edge(e) if len(res[r][0]) != 2: print 'there is an error with the edges' import pdb pdb.set_trace() # v = np.vectorize(self.coords_edge, otypes=[np.object]) # res = v(edges) return res
Example 27
def DFS(self, start, fs=None): ''' Returns the DFS tree for the graph starting from start ''' to_be_processed = np.array([start], dtype=np.int) known = np.array([], dtype=np.int) tree = np.array([], dtype=object) if fs is None: fs = self.FSs while len(to_be_processed) > 0: # pop current_node = to_be_processed[0] to_be_processed = np.delete(to_be_processed, 0) for node in fs[current_node]: if node not in known: known = np.append(known, node) tree = np.append(tree, None) tree[-1] = (current_node, node) # push to_be_processed = np.insert(to_be_processed, 0, node) return tree
Example 28
def prim(self): ''' Returns Prim's minimum spanninng tree ''' big_f = set([]) costs = np.empty((self.n), dtype=object) costs[:] = np.max(self.costs) + 1 big_e = np.empty((self.n), dtype=object) big_q = set(range(self.n)) tree_edges = np.array([], dtype=object) while len(big_q) > 0: v = np.argmin(costs) big_q.remove(v) costs[v] = np.Infinity big_f.add(v) if big_e[v] is not None: tree_edges = np.append(tree_edges, None) tree_edges[-1] = (big_e[v], v) for i, w in zip(range(len(self.FSs[v])), self.FSs[v]): if w in big_q and self.FS_costs[v][i] < costs[w]: costs[w] = self.FS_costs[v][i] big_e[w] = v return tree_edges
Example 29
def connect_graphs(self, sets_orig, edges_orig): ''' Returns the edges needed to connect unconnected graphs (sets of nodes) given a set of sets of nodes, select the master_graph (the biggest) one and search the shortest edges to connect the other sets of nodes ''' master_graph = max(sets_orig, key=len) sets = sets_orig.copy() edges = np.array([], dtype=object) sets.remove(master_graph) master_tree = cKDTree(self.nodes[list(master_graph)]) for s in sets: x = np.array(list(s)) nearests = np.array([master_tree.query(self.nodes[v]) for v in x]) tails = nearests[ nearests[:, 0].argsort()][:, 1][:self.max_neighbours] heads = x[nearests[:, 0].argsort()][:self.max_neighbours] for head, tail in zip(heads, tails): edges = np.append(edges, None) edges[-1] = (head, tail) edges = np.append(edges, None) edges[-1] = (tail, head) return edges
Example 30
def test_wrap(self): class with_wrap(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): r = with_wrap() r.arr = arr r.context = context return r a = with_wrap() x = ncu.minimum(a, a) assert_equal(x.arr, np.zeros(1)) func, args, i = x.context self.assertTrue(func is ncu.minimum) self.assertEqual(len(args), 2) assert_equal(args[0], a) assert_equal(args[1], a) self.assertEqual(i, 0)
Example 31
def test_dot_override(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b)
Example 32
def test_ufunc_override_normalize_signature(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return # gh-5674 class SomeClass(object): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): return kw a = SomeClass() kw = np.add(a, [1]) assert_('sig' not in kw and 'signature' not in kw) kw = np.add(a, [1], sig='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') kw = np.add(a, [1], signature='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i')
Example 33
def write_csv(df, filename): """ Write a pandas dataframe to CSV in a standard way """ # Verify that the data do not contain commas for col in df.select_dtypes([np.object]): if df[col].str.contains(',').any(): raise ValueError("Failed write to %s: Column %s contains commas" % (filename, col)) df.to_csv(filename, header=True, index=False, sep=',')
Example 34
def append_data_column(ds, column): # Extend the dataset to fit the new data new_count = column.shape[0] existing_count = ds.shape[0] ds.resize((existing_count + new_count,)) levels = get_levels(ds) if levels is not None: # update levels if we have new unique values if type(column.values) == p.Categorical: added_levels = set(column.values.categories) - set(levels) elif len(column) == 0: # Workaround for bug in pandas - get a crash in .unique() for an empty series added_levels = set([]) else: added_levels = set(column.unique()) - set(levels) new_levels = list(levels) new_levels.extend(added_levels) # Check if the new categorical column has more levels # than the current bit width supports. # If so, rewrite the existing column data w/ more bits if len(new_levels) > np.iinfo(ds.dtype).max: new_dtype = pick_cat_dtype(len(new_levels)) ds = widen_cat_column(ds, new_dtype) new_levels = np.array(new_levels, dtype=np.object) new_data = make_index_array(new_levels, column.values, ds.dtype) clear_levels(ds) create_levels(ds, new_levels) else: new_data = column # Append new data ds[existing_count:(existing_count + new_count)] = new_data
Example 35
def analyze_pd_dataframe(dataframe, target_attributes): """Analyze pandas.Dataframe and convert it into internal representation. Parameters ---------- dataframe : pd.Dataframe input data, can contain float, int, object target_attributes : int, str or list Index the target attribute. If this is * an int, use this as an index (only works with positive indices) * a str, use this to compare with the column values * a list (which must either consist of all ints or strs), of which all elements that matched are assumed to be targets. Returns ------- np.ndarray Data. All columns are converted to type float. Categorical data is encoded by positive integers. dict Attribute types. Contains the following keys: * `type`: `categorical` or 'numerical` * `name`: column name of the dataframe * `is_target`: whether this column was designated as a target column """ dataframe = _normalize_pd_column_names(dataframe) attribute_types = _get_pd_attribute_types(dataframe, target_attributes) dataframe = _replace_objects_by_integers(dataframe, attribute_types) return dataframe.values, attribute_types
Example 36
def _compute_optimal(self): not_visited = { (y, x) for x in range(self.width) for y in range(self.height) } queue = collections.deque() queue.append(tuple(j[0] for j in np.where(self.grid == G))) policy = np.empty(self.grid.shape, dtype=np.object) print("INITIAL POLICY") print(policy) while len(queue) > 0: current = queue.pop() if current in not_visited: not_visited.remove(current) possible_actions = self.possible_next_actions( self._index(current), True ) for action in possible_actions: self._state = self._index(current) next_state, _, _, _ = self.step(action) next_state_pos = self._pos(next_state) if next_state_pos not in not_visited: continue not_visited.remove(next_state_pos) if not self.is_terminal(next_state) and \ self.grid[next_state_pos] != W: policy[next_state_pos] = self.invert_action(action) queue.appendleft(self._pos(next_state)) print("FINAL POLICY") print(policy) return policy
Example 37
def test_run(self): """Only test hash runs at all.""" for t in [np.int, np.float, np.complex, np.int32, np.str, np.object, np.unicode]: dt = np.dtype(t) hash(dt)
Example 38
def test_shape_sequence(self): # Any sequence of integers should work as shape, but the result # should be a tuple (immutable) of base type integers. a = np.array([1, 2, 3], dtype=np.int16) l = [1, 2, 3] # Array gets converted dt = np.dtype([('a', 'f4', a)]) assert_(isinstance(dt['a'].shape, tuple)) assert_(isinstance(dt['a'].shape[0], int)) # List gets converted dt = np.dtype([('a', 'f4', l)]) assert_(isinstance(dt['a'].shape, tuple)) # class IntLike(object): def __index__(self): return 3 def __int__(self): # (a PyNumber_Check fails without __int__) return 3 dt = np.dtype([('a', 'f4', IntLike())]) assert_(isinstance(dt['a'].shape, tuple)) assert_(isinstance(dt['a'].shape[0], int)) dt = np.dtype([('a', 'f4', (IntLike(),))]) assert_(isinstance(dt['a'].shape, tuple)) assert_(isinstance(dt['a'].shape[0], int))
Example 39
def test_empty_string_to_object(self): # Pull request #4722 np.array(["", ""]).astype(object)
Example 40
def test_object_nans(self): # Multiple checks to give this a chance to # fail if cmp is used instead of rich compare. # Failure cannot be guaranteed. for i in range(1): x = np.array(float('nan'), np.object) y = 1.0 z = np.array(float('nan'), np.object) assert_(np.maximum(x, y) == 1.0) assert_(np.maximum(z, y) == 1.0)
Example 41
def test_object_array(self): arg1 = np.arange(5, dtype=np.object) arg2 = arg1 + 1 assert_equal(np.maximum(arg1, arg2), arg2)
Example 42
def test_object_array(self): arg1 = np.arange(5, dtype=np.object) arg2 = arg1 + 1 assert_equal(np.minimum(arg1, arg2), arg1)
Example 43
def test_sign_dtype_object(self): # In reference to github issue #6229 foo = np.array([-.1, 0, .1]) a = np.sign(foo.astype(np.object)) b = np.sign(foo) assert_array_equal(a, b)
Example 44
def test_sign_dtype_nan_object(self): # In reference to github issue #6229 def test_nan(): foo = np.array([np.nan]) a = np.sign(foo.astype(np.object)) assert_raises(TypeError, test_nan)
Example 45
def test_old_wrap(self): class with_wrap(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr): r = with_wrap() r.arr = arr return r a = with_wrap() x = ncu.minimum(a, a) assert_equal(x.arr, np.zeros(1))
Example 46
def test_failing_wrap(self): class A(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): raise RuntimeError a = A() self.assertRaises(RuntimeError, ncu.maximum, a, a)
Example 47
def test_default_prepare(self): class with_wrap(object): __array_priority__ = 10 def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): return arr a = with_wrap() x = ncu.minimum(a, a) assert_equal(x, np.zeros(1)) assert_equal(type(x), np.ndarray)
Example 48
def test_failing_prepare(self): class A(object): def __array__(self): return np.zeros(1) def __array_prepare__(self, arr, context=None): raise RuntimeError a = A() self.assertRaises(RuntimeError, ncu.maximum, a, a)
Example 49
def test_array_with_context(self): class A(object): def __array__(self, dtype=None, context=None): func, args, i = context self.func = func self.args = args self.i = i return np.zeros(1) class B(object): def __array__(self, dtype=None): return np.zeros(1, dtype) class C(object): def __array__(self): return np.zeros(1) a = A() ncu.maximum(np.zeros(1), a) self.assertTrue(a.func is ncu.maximum) assert_equal(a.args[0], 0) self.assertTrue(a.args[1] is a) self.assertTrue(a.i == 1) assert_equal(ncu.maximum(a, B()), 0) assert_equal(ncu.maximum(a, C()), 0)
Example 50
def test_ufunc_override_disabled(self): # 2016-01-29: NUMPY_UFUNC_DISABLED # This test should be removed when __numpy_ufunc__ is re-enabled. class MyArray(object): def __numpy_ufunc__(self, *args, **kwargs): self._numpy_ufunc_called = True my_array = MyArray() real_array = np.ones(10) assert_raises(TypeError, lambda: real_array + my_array) assert_raises(TypeError, np.add, real_array, my_array) assert not hasattr(my_array, "_numpy_ufunc_called")