Python numpy.floating() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 

Example 2

def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 

Example 3

def unique1d(values):
    """
    Hash table-based unique
    """
    if np.issubdtype(values.dtype, np.floating):
        table = _hash.Float64HashTable(len(values))
        uniques = np.array(table.unique(_ensure_float64(values)),
                           dtype=np.float64)
    elif np.issubdtype(values.dtype, np.datetime64):
        table = _hash.Int64HashTable(len(values))
        uniques = table.unique(_ensure_int64(values))
        uniques = uniques.view('M8[ns]')
    elif np.issubdtype(values.dtype, np.timedelta64):
        table = _hash.Int64HashTable(len(values))
        uniques = table.unique(_ensure_int64(values))
        uniques = uniques.view('m8[ns]')
    elif np.issubdtype(values.dtype, np.integer):
        table = _hash.Int64HashTable(len(values))
        uniques = table.unique(_ensure_int64(values))
    else:
        table = _hash.PyObjectHashTable(len(values))
        uniques = table.unique(_ensure_object(values))
    return uniques 

Example 4

def test_default_type_conversion(self):
        df = sql.read_sql_table("types_test_data", self.conn)

        self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating),
                        "FloatCol loaded with incorrect type")
        self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer),
                        "IntCol loaded with incorrect type")
        self.assertTrue(issubclass(df.BoolCol.dtype.type, np.bool_),
                        "BoolCol loaded with incorrect type")

        # Int column with NA values stays as float
        self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating),
                        "IntColWithNull loaded with incorrect type")
        # Bool column with NA values becomes object
        self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.object),
                        "BoolColWithNull loaded with incorrect type") 

Example 5

def test_default_type_conversion(self):
        df = sql.read_sql_table("types_test_data", self.conn)

        self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating),
                        "FloatCol loaded with incorrect type")
        self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer),
                        "IntCol loaded with incorrect type")
        # sqlite has no boolean type, so integer type is returned
        self.assertTrue(issubclass(df.BoolCol.dtype.type, np.integer),
                        "BoolCol loaded with incorrect type")

        # Int column with NA values stays as float
        self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating),
                        "IntColWithNull loaded with incorrect type")
        # Non-native Bool column with NA values stays as float
        self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.floating),
                        "BoolColWithNull loaded with incorrect type") 

Example 6

def test_default_type_conversion(self):
        df = sql.read_sql_table("types_test_data", self.conn)

        self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating),
                        "FloatCol loaded with incorrect type")
        self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer),
                        "IntCol loaded with incorrect type")
        # MySQL has no real BOOL type (it's an alias for TINYINT)
        self.assertTrue(issubclass(df.BoolCol.dtype.type, np.integer),
                        "BoolCol loaded with incorrect type")

        # Int column with NA values stays as float
        self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating),
                        "IntColWithNull loaded with incorrect type")
        # Bool column with NA = int column with NA values => becomes float
        self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.floating),
                        "BoolColWithNull loaded with incorrect type") 

Example 7

def _handle_date_column(col, format=None):
    if isinstance(format, dict):
        return to_datetime(col, errors='ignore', **format)
    else:
        if format in ['D', 's', 'ms', 'us', 'ns']:
            return to_datetime(col, errors='coerce', unit=format, utc=True)
        elif (issubclass(col.dtype.type, np.floating) or
              issubclass(col.dtype.type, np.integer)):
            # parse dates as timestamp
            format = 's' if format is None else format
            return to_datetime(col, errors='coerce', unit=format, utc=True)
        elif com.is_datetime64tz_dtype(col):
            # coerce to UTC timezone
            # GH11216
            return (to_datetime(col, errors='coerce')
                    .astype('datetime64[ns, UTC]'))
        else:
            return to_datetime(col, errors='coerce', format=format, utc=True) 

Example 8

def inner(a, b):
    """
    Returns the inner product of a and b for arrays of floating point types.

    Like the generic NumPy equivalent the product sum is over the last dimension
    of a and b.

    Notes
    -----
    The first argument is not conjugated.

    """
    fa = filled(a, 0)
    fb = filled(b, 0)
    if len(fa.shape) == 0:
        fa.shape = (1,)
    if len(fb.shape) == 0:
        fb.shape = (1,)
    return np.inner(fa, fb).view(MaskedArray) 

Example 9

def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 

Example 10

def default(self, obj):
		if isinstance(obj, np.integer):
			return int(obj)
		elif isinstance(obj, np.floating):
			return float(obj)
		elif isinstance(obj, np.ndarray):
			return obj.tolist()
		elif isinstance(obj, WhitespaceNLP.Doc):
			return repr(obj)
		elif isinstance(obj, AsianNLP.Doc):
			return repr(obj)
		elif 'spacy' in sys.modules:
			import spacy
			if isinstance(obj, spacy.tokens.doc.Doc):
				return repr(obj)
		else:
			return super(MyEncoder, self).default(obj) 

Example 11

def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 

Example 12

def array_serializer(data, **kwargs):
    """Convert the array data to a serialized binary format"""
    if isinstance(data.flatten()[0], np.floating):
        use_dtype = '<f4'
        nan_mask = ~np.isnan(data)
        assert np.allclose(
                data.astype(use_dtype)[nan_mask], data[nan_mask]), \
            'Converting the type should not screw things up.'
    elif isinstance(data.flatten()[0], np.integer):
        use_dtype = '<i4'
        assert (data.astype(use_dtype) == data).all(), \
            'Converting the type should not screw things up.'
    else:
        raise TypeError('Must be a float or an int: {}'.format(data.dtype))

    data_file = NamedTemporaryFile('rb+', suffix='.dat')
    data.astype(use_dtype).tofile(data_file.file)
    data_file.seek(0)
    return FileProp(data_file, use_dtype) 

Example 13

def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 

Example 14

def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 

Example 15

def upcast_float16_ufunc(fn):
    """Decorator that enforces computation is not done in float16 by NumPy.

    Some ufuncs in NumPy will compute float values on int8 and uint8
    in half-precision (float16), which is not enough, and not compatible
    with the C code.

    :param fn: numpy ufunc
    :returns: function similar to fn.__call__, computing the same
        value with a minimum floating-point precision of float32
    """
    def ret(*args, **kwargs):
        out_dtype = numpy.find_common_type(
            [a.dtype for a in args], [numpy.float16])
        if out_dtype == 'float16':
            # Force everything to float32
            sig = 'f' * fn.nin + '->' + 'f' * fn.nout
            kwargs.update(sig=sig)
        return fn(*args, **kwargs)

    return ret 

Example 16

def upcast_int8_nfunc(fn):
    """Decorator that upcasts input of dtype int8 to float32.

    This is so that floating-point computation is not carried using
    half-precision (float16), as some NumPy functions do.

    :param fn: function computing a floating-point value from inputs
    :returns: function similar to fn, but upcasting its uint8 and int8
        inputs before carrying out the computation.
    """
    def ret(*args, **kwargs):
        args = list(args)
        for i, a in enumerate(args):
            if getattr(a, 'dtype', None) in ('int8', 'uint8'):
                args[i] = a.astype('float32')

        return fn(*args, **kwargs)

    return ret 

Example 17

def _get_inplace_dtype(obj1, obj2):
    """
    Returns the dtype of obj1,
    Raise error if
    1) obj1 is real and obj2 is complex
    2) obj1 is integer and obj2 is floating
    
    Parameters
    ----------
    obj1 : numpy.ndarray like array
    obj2 : numpy.ndarray like array
    
    Returns
    -------
    out : np.dtype
    """
    if isrealobj(obj1):
        if iscomplexobj(obj2):
            raise TypeError("Cannot cast complex dtype to real dtype")
    if issubclass(obj1.dtype.type, np.integer):
        if issubclass(obj2.dtype.type, (np.floating, np.complexfloating)):
            raise TypeError("Cannot cast floating to integer")
    return obj1.dtype 

Example 18

def _get_common_dtype_with_scalar(scalar, obj1):
    """
    return the common dtype between a native scalar (int, float, complex)
    and the dtype of an ndarray like array.
    
    Parameters
    ----------
    scalar : { int, float, complex }
    obj1 : numpy.ndarray like array.
    
    """
    if issubclass(type(scalar), (int, float, np.integer, np.floating)):
        return obj1.dtype
    elif issubclass(type(scalar), (complex, np.complexfloating)):
        if isrealobj(obj1):
            return floattocomplex(obj1.dtype)
        else:
            return obj1.dtype
    else:
        raise TypeError("scalar type is not supported") 

Example 19

def default(self, val):
        if isinstance(val, (datetime)):
            return str(val)
        elif isinstance(val, np.integer):
            return int(val)
        elif isinstance(val, np.floating):
            return float(val)
        elif isinstance(val, np.bool_):
            return bool(val)
        elif isinstance(val, np.ndarray):
            return val.tolist()
        elif is_proxy(val) or isinstance(val, Artifact):
            return repr(val)
        elif callable(val):
            try:
                return utils.fn_info(val)
            except:
                pass
        else:
            try:
                return super(Encoder, self).default(val)
            except Exception as e:
                print("Could not serialize type: {}".format(type(val)))
                return str(type(val)) 

Example 20

def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 

Example 21

def RATWriteArray(rat, array, field, start=0):
    """
    Pure Python implementation of writing a chunk of the RAT
    from a numpy array. Type of array is coerced to one of the types
    (int, double, string) supported. Called from RasterAttributeTable.WriteArray
    """
    if array is None:
        raise ValueError("Expected array of dim 1")

    # if not the array type convert it to handle lists etc
    if not isinstance(array, numpy.ndarray):
        array = numpy.array(array)

    if array.ndim != 1:
        raise ValueError("Expected array of dim 1")

    if (start + array.size) > rat.GetRowCount():
        raise ValueError("Array too big to fit into RAT from start position")

    if numpy.issubdtype(array.dtype, numpy.integer):
        # is some type of integer - coerce to standard int
        # TODO: must check this is fine on all platforms
        # confusingly numpy.int 64 bit even if native type 32 bit
        array = array.astype(numpy.int32)
    elif numpy.issubdtype(array.dtype, numpy.floating):
        # is some type of floating point - coerce to double
        array = array.astype(numpy.double)
    elif numpy.issubdtype(array.dtype, numpy.character):
        # cast away any kind of Unicode etc
        array = array.astype(numpy.character)
    else:
        raise ValueError("Array not of a supported type (integer, double or string)")

    return RATValuesIONumPyWrite(rat, field, start, array) 

Example 22

def default(self, obj):
    if isinstance(obj, np.integer):
      return int(obj)
    elif isinstance(obj, np.ndarray):
      return obj.tolist()
    elif isinstance(obj, np.floating):
      return float(obj)
    else:
      return super(MyEncoder, self).default(obj) 

Example 23

def format(self):
        if callable(self._format):
            return self._format(self)
        if isinstance(self.value, (float, np.floating)):
            if self._format is None:
                return self._defaultFormat % self.value
            else:
                return self._format % self.value
        else:
            return asUnicode(self.value) 

Example 24

def writeHDF5Meta(self, root, name, data, **dsOpts):
        if isinstance(data, np.ndarray):
            dsOpts['maxshape'] = (None,) + data.shape[1:]
            root.create_dataset(name, data=data, **dsOpts)
        elif isinstance(data, list) or isinstance(data, tuple):
            gr = root.create_group(name)
            if isinstance(data, list):
                gr.attrs['_metaType_'] = 'list'
            else:
                gr.attrs['_metaType_'] = 'tuple'
            #n = int(np.log10(len(data))) + 1
            for i in range(len(data)):
                self.writeHDF5Meta(gr, str(i), data[i], **dsOpts)
        elif isinstance(data, dict):
            gr = root.create_group(name)
            gr.attrs['_metaType_'] = 'dict'
            for k, v in data.items():
                self.writeHDF5Meta(gr, k, v, **dsOpts)
        elif isinstance(data, int) or isinstance(data, float) or isinstance(data, np.integer) or isinstance(data, np.floating):
            root.attrs[name] = data
        else:
            try:   ## strings, bools, None are stored as repr() strings
                root.attrs[name] = repr(data)
            except:
                print("Can not store meta data of type '%s' in HDF5. (key is '%s')" % (str(type(data)), str(name)))
                raise 

Example 25

def format(self):
        if callable(self._format):
            return self._format(self)
        if isinstance(self.value, (float, np.floating)):
            if self._format is None:
                return self._defaultFormat % self.value
            else:
                return self._format % self.value
        else:
            return asUnicode(self.value) 

Example 26

def writeHDF5Meta(self, root, name, data, **dsOpts):
        if isinstance(data, np.ndarray):
            dsOpts['maxshape'] = (None,) + data.shape[1:]
            root.create_dataset(name, data=data, **dsOpts)
        elif isinstance(data, list) or isinstance(data, tuple):
            gr = root.create_group(name)
            if isinstance(data, list):
                gr.attrs['_metaType_'] = 'list'
            else:
                gr.attrs['_metaType_'] = 'tuple'
            #n = int(np.log10(len(data))) + 1
            for i in range(len(data)):
                self.writeHDF5Meta(gr, str(i), data[i], **dsOpts)
        elif isinstance(data, dict):
            gr = root.create_group(name)
            gr.attrs['_metaType_'] = 'dict'
            for k, v in data.items():
                self.writeHDF5Meta(gr, k, v, **dsOpts)
        elif isinstance(data, int) or isinstance(data, float) or isinstance(data, np.integer) or isinstance(data, np.floating):
            root.attrs[name] = data
        else:
            try:   ## strings, bools, None are stored as repr() strings
                root.attrs[name] = repr(data)
            except:
                print("Can not store meta data of type '%s' in HDF5. (key is '%s')" % (str(type(data)), str(name)))
                raise 

Example 27

def save_images(X, save_path):
    # [0, 1] -> [0,255]
    if isinstance(X.flatten()[0], np.floating):
        X = (255.99*X).astype('uint8')

    n_samples = X.shape[0]
    rows = int(np.sqrt(n_samples))
    while n_samples % rows != 0:
        rows -= 1

    nh, nw = rows, n_samples/rows

    if X.ndim == 2:
        X = np.reshape(X, (X.shape[0], int(np.sqrt(X.shape[1])), int(np.sqrt(X.shape[1]))))

    if X.ndim == 4:
        # BCHW -> BHWC
        X = X.transpose(0,2,3,1)
        h, w = X[0].shape[:2]
        img = np.zeros((h*nh, w*nw, 3))
    elif X.ndim == 3:
        h, w = X[0].shape[:2]
        img = np.zeros((h*nh, w*nw))

    for n, x in enumerate(X):
        j = n/nw
        i = n%nw
        img[j*h:j*h+h, i*w:i*w+w] = x

    imsave(save_path, img) 

Example 28

def save_images(X, save_path):
    # [0, 1] -> [0,255]
    if isinstance(X.flatten()[0], np.floating):
        X = (255.99*X).astype('uint8')

    n_samples = X.shape[0]
    rows = int(np.sqrt(n_samples))
    while n_samples % rows != 0:
        rows -= 1

    nh, nw = rows, n_samples//rows

    if X.ndim == 2:
        X = np.reshape(X, (X.shape[0], int(np.sqrt(X.shape[1])), int(np.sqrt(X.shape[1]))))

    if X.ndim == 4:
        # BCHW -> BHWC
        X = X.transpose(0,2,3,1)
        h, w = X[0].shape[:2]
        img = np.zeros((h*nh, w*nw, 3))
    elif X.ndim == 3:
        h, w = X[0].shape[:2]
        img = np.zeros((h*nh, w*nw))

    for n, x in enumerate(X):
        j = n//nw
        i = n%nw
        img[j*h:j*h+h, i*w:i*w+w] = x

    imsave(save_path, img) 

Example 29

def _getconv(dtype):
    """ Find the correct dtype converter. Adapted from matplotlib """

    def floatconv(x):
        x.lower()
        if b'0x' in x:
            return float.fromhex(asstr(x))
        return float(x)

    typ = dtype.type
    if issubclass(typ, np.bool_):
        return lambda x: bool(int(x))
    if issubclass(typ, np.uint64):
        return np.uint64
    if issubclass(typ, np.int64):
        return np.int64
    if issubclass(typ, np.integer):
        return lambda x: int(float(x))
    elif issubclass(typ, np.longdouble):
        return np.longdouble
    elif issubclass(typ, np.floating):
        return floatconv
    elif issubclass(typ, np.complex):
        return lambda x: complex(asstr(x))
    elif issubclass(typ, np.bytes_):
        return bytes
    else:
        return str 

Example 30

def masked_equal(x, value, copy=True):
    """
    Mask an array where equal to a given value.

    This function is a shortcut to ``masked_where``, with
    `condition` = (x == value).  For floating point arrays,
    consider using ``masked_values(x, value)``.

    See Also
    --------
    masked_where : Mask where a condition is met.
    masked_values : Mask using floating point equality.

    Examples
    --------
    >>> import numpy.ma as ma
    >>> a = np.arange(4)
    >>> a
    array([0, 1, 2, 3])
    >>> ma.masked_equal(a, 2)
    masked_array(data = [0 1 -- 3],
          mask = [False False  True False],
          fill_value=999999)

    """
    output = masked_where(equal(x, value), x, copy=copy)
    output.fill_value = value
    return output 

Example 31

def sort(a, axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None):
    "Function version of the eponymous method."
    a = narray(a, copy=True, subok=True)
    if axis is None:
        a = a.flatten()
        axis = 0
    if fill_value is None:
        if endwith:
            # nan > inf
            if np.issubdtype(a.dtype, np.floating):
                filler = np.nan
            else:
                filler = minimum_fill_value(a)
        else:
            filler = maximum_fill_value(a)
    else:
        filler = fill_value

    sindx = filled(a, filler).argsort(axis=axis, kind=kind, order=order)

    # save meshgrid memory for 1d arrays
    if a.ndim == 1:
        indx = sindx
    else:
        indx = np.meshgrid(*[np.arange(x) for x in a.shape], sparse=True,
                           indexing='ij')
        indx[axis] = sindx
    return a[indx] 

Example 32

def test_vector_return_type(self):
        a = np.array([1, 0, 1])

        exact_types = np.typecodes['AllInteger']
        inexact_types = np.typecodes['AllFloat']

        all_types = exact_types + inexact_types

        for each_inexact_types in all_types:
            at = a.astype(each_inexact_types)

            an = norm(at, -np.inf)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 0.0)

            with warnings.catch_warnings():
                warnings.simplefilter("ignore", RuntimeWarning)
                an = norm(at, -1)
                assert_(issubclass(an.dtype.type, np.floating))
                assert_almost_equal(an, 0.0)

            an = norm(at, 0)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 2)

            an = norm(at, 1)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 2.0)

            an = norm(at, 2)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 2.0**(1.0/2.0))

            an = norm(at, 4)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 2.0**(1.0/4.0))

            an = norm(at, np.inf)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 1.0) 

Example 33

def float_samples_to_int16(y):
  """Convert floating-point numpy array of audio samples to int16."""
  if not issubclass(y.dtype.type, np.floating):
    raise ValueError('input samples not floating-point')
  return (y * np.iinfo(np.int16).max).astype(np.int16) 

Example 34

def samples_to_wav_data(samples, sample_rate):
  """Converts floating point samples to wav data."""
  wav_io = six.BytesIO()
  scipy.io.wavfile.write(wav_io, sample_rate, float_samples_to_int16(samples))
  return wav_io.getvalue() 

Example 35

def __contains__(self, value, memo=None):
        if self.dtype is None:
            raise TypeError("cannot determine if {0} is in {1}: no dtype specified".format(repr(value), self))
        if self.dims is None:
            raise TypeError("cannot determine if {0} is in {1}: no dims specified".format(repr(value), self))
        if value is None:
            return self.nullable

        def recurse(value, dims):
            if dims == ():
                if issubclass(self.dtype.type, (numpy.bool_, numpy.bool)):
                    return value is True or value is False

                elif issubclass(self.dtype.type, numpy.integer):
                    iinfo = numpy.iinfo(self.dtype.type)
                    return isinstance(value, numbers.Integral) and iinfo.min <= value <= iinfo.max

                elif issubclass(self.dtype.type, numpy.floating):
                    return isinstance(value, numbers.Real)

                elif issubclass(self.dtype.type, numpy.complex):
                    return isinstance(value, numbers.Complex)

                else:
                    raise TypeError("unexpected dtype: {0}".format(self.dtype))

            else:
                try:
                    iter(value)
                    len(value)
                except TypeError:
                    return False
                else:
                    return len(value) == dims[0] and all(recurse(x, dims[1:]) for x in value)

        return recurse(value, self.dims) 

Example 36

def _getconv(dtype):
    """ Find the correct dtype converter. Adapted from matplotlib """

    def floatconv(x):
        x.lower()
        if b'0x' in x:
            return float.fromhex(asstr(x))
        return float(x)

    typ = dtype.type
    if issubclass(typ, np.bool_):
        return lambda x: bool(int(x))
    if issubclass(typ, np.uint64):
        return np.uint64
    if issubclass(typ, np.int64):
        return np.int64
    if issubclass(typ, np.integer):
        return lambda x: int(float(x))
    elif issubclass(typ, np.longdouble):
        return np.longdouble
    elif issubclass(typ, np.floating):
        return floatconv
    elif issubclass(typ, np.complex):
        return lambda x: complex(asstr(x))
    elif issubclass(typ, np.bytes_):
        return bytes
    else:
        return str 

Example 37

def masked_equal(x, value, copy=True):
    """
    Mask an array where equal to a given value.

    This function is a shortcut to ``masked_where``, with
    `condition` = (x == value).  For floating point arrays,
    consider using ``masked_values(x, value)``.

    See Also
    --------
    masked_where : Mask where a condition is met.
    masked_values : Mask using floating point equality.

    Examples
    --------
    >>> import numpy.ma as ma
    >>> a = np.arange(4)
    >>> a
    array([0, 1, 2, 3])
    >>> ma.masked_equal(a, 2)
    masked_array(data = [0 1 -- 3],
          mask = [False False  True False],
          fill_value=999999)

    """
    output = masked_where(equal(x, value), x, copy=copy)
    output.fill_value = value
    return output 

Example 38

def sort(a, axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None):
    "Function version of the eponymous method."
    a = narray(a, copy=True, subok=True)
    if axis is None:
        a = a.flatten()
        axis = 0
    if fill_value is None:
        if endwith:
            # nan > inf
            if np.issubdtype(a.dtype, np.floating):
                filler = np.nan
            else:
                filler = minimum_fill_value(a)
        else:
            filler = maximum_fill_value(a)
    else:
        filler = fill_value

    sindx = filled(a, filler).argsort(axis=axis, kind=kind, order=order)

    # save meshgrid memory for 1d arrays
    if a.ndim == 1:
        indx = sindx
    else:
        indx = np.meshgrid(*[np.arange(x) for x in a.shape], sparse=True,
                           indexing='ij')
        indx[axis] = sindx
    return a[indx] 

Example 39

def test_vector_return_type(self):
        a = np.array([1, 0, 1])

        exact_types = np.typecodes['AllInteger']
        inexact_types = np.typecodes['AllFloat']

        all_types = exact_types + inexact_types

        for each_inexact_types in all_types:
            at = a.astype(each_inexact_types)

            an = norm(at, -np.inf)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 0.0)

            with warnings.catch_warnings():
                warnings.simplefilter("ignore", RuntimeWarning)
                an = norm(at, -1)
                assert_(issubclass(an.dtype.type, np.floating))
                assert_almost_equal(an, 0.0)

            an = norm(at, 0)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 2)

            an = norm(at, 1)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 2.0)

            an = norm(at, 2)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 2.0**(1.0/2.0))

            an = norm(at, 4)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 2.0**(1.0/4.0))

            an = norm(at, np.inf)
            assert_(issubclass(an.dtype.type, np.floating))
            assert_almost_equal(an, 1.0) 

Example 40

def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(JSONEncoder, self).default(obj) 

Example 41

def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        elif isinstance(obj, np.bool_):
            return bool(obj)
        elif isinstance(obj, set):
            return list(obj)
        else:
            return super(MyEncoder, self).default(obj) 

Example 42

def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(MsgEncoder, self).default(obj)

#Normalized versions with summary stats to be sent to the cloud 

Example 43

def sanitize_dataframe(df):
    """Sanitize a DataFrame to prepare it for serialization.

    * Make a copy
    * Raise ValueError if it has a hierarchical index.
    * Convert categoricals to strings.
    * Convert np.int dtypes to Python int objects
    * Convert floats to objects and replace NaNs by None.
    * Convert DateTime dtypes into appropriate string representations
    """
    import pandas as pd
    import numpy as np

    df = df.copy()

    if isinstance(df.index, pd.core.index.MultiIndex):
        raise ValueError('Hierarchical indices not supported')
    if isinstance(df.columns, pd.core.index.MultiIndex):
        raise ValueError('Hierarchical indices not supported')

    for col_name, dtype in df.dtypes.iteritems():
        if str(dtype) == 'category':
            # XXXX: work around bug in to_json for categorical types
            # https://github.com/pydata/pandas/issues/10778
            df[col_name] = df[col_name].astype(str)
        elif np.issubdtype(dtype, np.integer):
            # convert integers to objects; np.int is not JSON serializable
            df[col_name] = df[col_name].astype(object)
        elif np.issubdtype(dtype, np.floating):
            # For floats, convert nan->None: np.float is not JSON serializable
            col = df[col_name].astype(object)
            df[col_name] = col.where(col.notnull(), None)
        elif str(dtype).startswith('datetime'):
            # Convert datetimes to strings
            # astype(str) will choose the appropriate resolution
            df[col_name] = df[col_name].astype(str).replace('NaT', '')
    return df 

Example 44

def default(self, obj):
        if isinstance(obj, numpy.integer):
            return int(obj)
        elif isinstance(obj, numpy.floating):
            return float(obj)
        elif isinstance(obj, numpy.ndarray):
            return obj.tolist()
        else:
            return super(MyEncoder, self).default(obj) 

Example 45

def filternsaval(context, value, key):
    ''' Parse plateifu or mangaid into better form '''

    if type(value) == list:
        newvalue = ', '.join([str(np.round(v, 4)) for v in value])
    elif isinstance(value, (float, np.floating)):
        newvalue = np.round(value, 4)
    else:
        newvalue = value

    return newvalue 

Example 46

def save_images(X, save_path):
    # [0, 1] -> [0,255]
    if isinstance(X.flatten()[0], np.floating):
        X = (255.99*X).astype('uint8')

    n_samples = X.shape[0]
    rows = int(np.sqrt(n_samples))
    while n_samples % rows != 0:
        rows -= 1

    nh, nw = rows, n_samples//rows

    if X.ndim == 2:
        X = np.reshape(X, (X.shape[0], int(np.sqrt(X.shape[1])), int(np.sqrt(X.shape[1]))))

    if X.ndim == 4:
        # BCHW -> BHWC
        X = X.transpose(0,2,3,1)
        h, w = X[0].shape[:2]
        img = np.zeros((h*nh, w*nw, 3))
    elif X.ndim == 3:
        h, w = X[0].shape[:2]
        img = np.zeros((h*nh, w*nw))

    for n, x in enumerate(X):
        #j = n/nw
        #i = n%nw
        j, i = divmod(n, nw)
        img[j*h:j*h+h, i*w:i*w+w] = x

    imsave(save_path, img) 

Example 47

def is_floating(self):
        return self.inferred_type in ['floating', 'mixed-integer-float'] 

Example 48

def is_numeric(self):
        return self.inferred_type in ['integer', 'floating'] 

Example 49

def _maybe_cast_indexer(self, key):
        """
        If we have a float key and are not a floating index
        then try to cast to an int if equivalent
        """

        if is_float(key) and not self.is_floating():
            try:
                ckey = int(key)
                if ckey == key:
                    key = ckey
            except (ValueError, TypeError):
                pass
        return key 

Example 50

def _can_hold_element(self, element):
        if is_list_like(element):
            element = np.array(element)
            tipo = element.dtype.type
            return (issubclass(tipo, (np.floating, np.integer)) and
                    not issubclass(tipo, (np.datetime64, np.timedelta64)))
        return (isinstance(element, (float, int, np.float_, np.int_)) and
                not isinstance(element, (bool, np.bool_, datetime, timedelta,
                                         np.datetime64, np.timedelta64))) 
点赞