Python numpy.int0() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def img_contour_select(ctrs, im):
    # ????????????
    cand_rect = []
    for item in ctrs:
        epsilon = 0.02*cv2.arcLength(item, True)
        approx = cv2.approxPolyDP(item, epsilon, True)  
        if len(approx) <= 8:
            rect = cv2.minAreaRect(item)
            if rect[1][0] < 20 or rect[1][1] < 20:
                continue
            if rect[1][0] > 150 or rect[1][1] > 150:
                continue        
            #ratio = (rect[1][1]+0.00001) / rect[1][0]
            #if ratio > 1 or ratio < 0.9:
            #    continue
            box = cv2.boxPoints(rect)
            box_d = np.int0(box)
            cv2.drawContours(im, [box_d], 0, (0,255,0), 3)
            cand_rect.append(box)
    img_show_hook("????", im)   
    return cand_rect 

Example 2

def img_contour_select(ctrs, im):
    # ????????????
    cand_rect = []
    for item in ctrs:
        epsilon = 0.02*cv2.arcLength(item, True)
        approx = cv2.approxPolyDP(item, epsilon, True)  
        if len(approx) <= 8:
            rect = cv2.minAreaRect(item)
            #????????
            if rect[2] < -10 and rect[2] > -80:
                continue
            if rect[1][0] < 10 or rect[1][1] < 10:
                continue
            #ratio = (rect[1][1]+0.00001) / rect[1][0]
            #if ratio > 1 or ratio < 0.9:
            #    continue
            box = cv2.boxPoints(rect)
            box_d = np.int0(box)
            cv2.drawContours(im, [box_d], 0, (0,255,0), 3)
            cand_rect.append(box)
    img_show_hook("????", im)   
    return cand_rect 

Example 3

def findCorners(contour):
    """blank_image = np.zeros((img.shape[0],img.shape[1],3), np.uint8)
    cv2.drawContours(blank_image, contour, -1, (255, 255, 255))
    rows,cols = img.shape[0], img.shape[1]
    M = cv2.getRotationMatrix2D((cols/2,rows/2),-45,0.5)
    dst = cv2.warpAffine(blank_image,M,(cols,rows))
    cv2.imshow("rotatio", dst)
    cv2.waitKey()"""
    rect = cv2.minAreaRect(contour)
    box = cv2.boxPoints(rect)
    box = np.int0(box)
    height_px_1 = box[0][1] - box[3][1]
    height_px_2 = box[1][1] - box[2][1]
    print height_px_1, height_px_2
    if height_px_1 < height_px_2:
        close_height_px = height_px_2
        far_height_px = height_px_1
    else:
        close_height_px = height_px_1
        far_height_px = height_px_2

    return close_height_px, far_height_px 

Example 4

def remove_border(contour, ary):
    """Remove everything outside a border contour."""
    # Use a rotated rectangle (should be a good approximation of a border).
    # If it's far from a right angle, it's probably two sides of a border and
    # we should use the bounding box instead.
    c_im = np.zeros(ary.shape)
    r = cv2.minAreaRect(contour)
    degs = r[2]
    if angle_from_right(degs) <= 10.0:
        box = cv2.boxPoints(r)
        box = np.int0(box)
        cv2.drawContours(c_im, [box], 0, 255, -1)
        cv2.drawContours(c_im, [box], 0, 0, 4)
    else:
        x1, y1, x2, y2 = cv2.boundingRect(contour)
        cv2.rectangle(c_im, (x1, y1), (x2, y2), 255, -1)
        cv2.rectangle(c_im, (x1, y1), (x2, y2), 0, 4)

    return np.minimum(c_im, ary) 

Example 5

def getMask(self, shape):

        p=self.state['pos']
        s=self.state['size']
        center=p + s / 2
        a=self.state['angle']
        # opencv convention:
        shape = (shape[1], shape[0])
        arr1 = np.zeros(shape, dtype=np.uint8)
        arr2 = np.zeros(shape, dtype=np.uint8)

        # draw rotated rectangle:
        vertices = np.int0(cv2.boxPoints((center, s, a)))
        cv2.drawContours(arr1, [vertices], 0, color=1, thickness=-1)
        # draw ellipse:
        cv2.ellipse(arr2, (int(center[0]), int(center[1])), (int(s[0] / 2 * self._ratioEllispeRectangle),
                     int(s[1] / 2 * self._ratioEllispeRectangle)), int(a),
                    startAngle=0, endAngle=360, color=1, thickness=-1)
        # bring both together:
        return np.logical_and(arr1, arr2).T 

Example 6

def getMask(self, shape):

        p = self.state['pos']
        s = self.state['size']
        center = p + s / 2
        a = self.state['angle']
        # opencv convention:
        shape = (shape[1], shape[0])
        arr = np.zeros(shape, dtype=np.uint8)
        # draw rotated rectangle:
        vertices = np.int0(cv2.boxPoints((center, s, a)))
        cv2.drawContours(arr, [vertices],
                         0,
                         color=1,
                         thickness=-1)
        return arr.astype(bool).T 

Example 7

def deal(self,frame):
        frame=frame.copy()
        track_window=self.track_window
        term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
        roi_hist=self.roi_hist 
        dst = cv2.calcBackProject([frame],[0],roi_hist,[0,180],1)
        if self.m=='m':
            ret, track_window_r = cv2.meanShift(dst, track_window, term_crit)
            x,y,w,h = track_window_r
            img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
        elif self.m=='c':
            ret, track_window_r = cv2.CamShift(dst, track_window, term_crit)
            
            
            pts = cv2.boxPoints(ret)
            pts = np.int0(pts)
            img2 = cv2.polylines(frame,[pts],True, 255,2)
        rectsNew=[]

        center1=(track_window[0]+track_window[2]//2,track_window[1]+track_window[3]//2)
        center2=(track_window_r[0]+track_window_r[2]//2,track_window_r[1]+track_window_r[3]//2)
        img2 = cv2.line(img2,center1,center2,color=0)
        rectsNew=track_window_r
#        x,y,w,h = track_window
#        img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
        cv2.imshow('img2',img2)
        cv2.waitKey(0) 
        cv2.destroyAllWindows()
        return rectsNew 

Example 8

def remove_border(contour, ary):
    """Remove everything outside a border contour."""
    # Use a rotated rectangle (should be a good approximation of a border).
    # If it's far from a right angle, it's probably two sides of a border and
    # we should use the bounding box instead.
    c_im = np.zeros(ary.shape)
    r = cv2.minAreaRect(contour)
    degs = r[2]
    if angle_from_right(degs) <= 10.0:
        box = cv2.cv.BoxPoints(r)
        box = np.int0(box)
        cv2.drawContours(c_im, [box], 0, 255, -1)
        cv2.drawContours(c_im, [box], 0, 0, 4)
    else:
        x1, y1, x2, y2 = cv2.boundingRect(contour)
        cv2.rectangle(c_im, (x1, y1), (x2, y2), 255, -1)
        cv2.rectangle(c_im, (x1, y1), (x2, y2), 0, 4)

    return np.minimum(c_im, ary) 

Example 9

def density_slice(rast, rel=np.less_equal, threshold=1000, nodata=-9999):
    '''
    Returns a density slice from a given raster. Arguments:
        rast        A gdal.Dataset or a NumPy array
        rel         A NumPy logic function; defaults to np.less_equal
        threshold   An integer number
    '''
    # Can accept either a gdal.Dataset or numpy.array instance
    if not isinstance(rast, np.ndarray):
        rastr = rast.ReadAsArray()

    else:
        rastr = rast.copy()

    if (len(rastr.shape) > 2 and min(rastr.shape) > 1):
        raise ValueError('Expected a single-band raster array')

    return np.logical_and(
        rel(rastr, np.ones(rast.shape) * threshold),
        np.not_equal(rastr, np.ones(rast.shape) * nodata)).astype(np.int0) 

Example 10

def shapeFiltering(img):
    contours = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]
    if len(contours) == 0:
        return "yoopsie"
    #else:
        #print contours
    """blank_image = np.zeros((img.shape[0],img.shape[1],3), np.uint8)
    cv2.drawContours(blank_image, contours, -1, (255, 255, 255))
    cv2.imshow("imagiae", blank_image)
    cv2.waitKey()"""
    good_shape = []
    for c in contours:
        x,y,w,h = cv2.boundingRect(c)
        """rect = cv2.minAreaRect(contour)
        box = cv2.boxPoints(rect)
        box = np.int0(box)
        w = """
        #if h == 0:
        #    continue
        ratio = w / h
        ratio_grade = ratio / (TMw / TMh)
        if 0.2 < ratio_grade < 1.8:
            good_shape.append(c)
    """blank_image = np.zeros((img.shape[0],img.shape[1],3), np.uint8)
    cv2.drawContours(blank_image, good_shape, -1, (255, 255, 255))
    cv2.imshow("imagia", blank_image)
    cv2.waitKey()"""
    return good_shape 

Example 11

def findCorners(contour):
    rect = cv2.minAreaRect(contour)
    box = cv2.boxPoints(rect)
    box = numpy.int0(box)
    height_px_1 = box[0][1] - box[3][1]
    height_px_2 = box[1][1] - box[2][1]
    print height_px_1, height_px_2
    if height_px_1 < height_px_2:
        close_height_px = height_px_2
        far_height_px = height_px_1
    else:
        close_height_px = height_px_1
        far_height_px = height_px_2

    return close_height_px, far_height_px 

Example 12

def update(roi):
        img1b.setImage(roi.getArrayRegion(arr, img1a), levels=(0, arr.max()))
        img1c.setImage(np.int0(r.getMask(arr.shape)))

    # cell.sigRegionChanged.connect(update)
    # update(cell) 

Example 13

def get_bounding_rect(contour):
    rect = cv2.minAreaRect(contour)
    box = cv2.boxPoints(rect)
    return np.int0(box) 

Example 14

def shi_tomasi(gray):
    # image????
    # maxCorners???????
    # qualityLevel?????????????????????
    # minDistance??????????
    corners = cv2.goodFeaturesToTrack(gray,25,0.01,10)
    cv2.computeCorrespondEpilines()
    # ?????? [[ 311., 250.]] ????????
    corners = np.int0(corners)
    return corners 

Example 15

def calculateFrame(self,cap):
        data = self.getDataPoints()
        #targetCascade = cv2.CascadeClassifier(cascPath)
        frame = cap.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        lower_bound = np.array([float(data['HMIN']),float(data["SMIN"]),float(data['VMIN'])])
        upper_bound = np.array([float(data['HMAX']),float(data["SMAX"]),float(data['VMAX'])])

        hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
        mask = cv2.inRange(hsv,lower_bound,upper_bound)

        largest_area = 0
        xCenter = -1
        yCenter = -1
        targetRect = None

        ret,thresh = cv2.threshold(mask,200,255,0)
        contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
	
	if len(contours) > 1:
		areas = [cv2.contourArea(c) for c in contours]
		max_index = np.argmax(areas)
		cnt = contours[max_index]
		rect = cv2.minAreaRect(cnt)
		box = cv2.cv.BoxPoints(rect)
		box = np.int0(box)

		xCenter = (box[0][0] + box[1][0] + box[2][0] + box[3][0]) /4
		yCenter = (box[0][1] + box[1][1] + box[2][1] + box[3][1]) /4
		cv2.drawContours(frame,[box],0,(0,255,0),2)	
  

        output = {}
	distance = 0.0025396523 * yCenter**2 + 0.1000098497 *yCenter + 46.8824851568
	theta = math.atan2(xCenter-160, distance)
        output_dict = {"xCenter": xCenter, "yCenter": yCenter,"theta": theta, "distance":distance}
        output = json.dumps(output_dict)

        
        return frame ,output , True, mask 

Example 16

def cfmask(mask, mask_values=(1,2,3,4,255), nodata=-9999):
    '''
    Returns a binary mask according to the CFMask algorithm results for the
    image; mask has True for water, cloud, shadow, and snow (if any) and False
    everywhere else. More information can be found:
        https://landsat.usgs.gov/landsat-surface-reflectance-quality-assessment

    Landsat 4-7 Pre-Collection pixel_qa values to be masked:
        mask_values = (1, 2, 3, 4)

    Landsat 4-7 Collection 1 pixel_qa values to be masked (for "Medium" confidence):
        mask_values = (1, 68, 72, 80, 112, 132, 136, 144, 160, 176, 224)

    Landsat 8 Collection 1 pixel_qa values to be masked (for "Medium" confidence):
        mask_values = (1, 324, 328, 386, 388, 392, 400, 416, 432, 480, 832, 836, 840, 848, 864, 880, 900, 904, 912, 928, 944, 992, 1024)

    Arguments:
        mask        A gdal.Dataset or a NumPy array
        mask_path   The path to an EOS HDF4 CFMask raster
        mask_values The values in the mask that correspond to NoData pixels
        nodata      The NoData value; defaults to -9999.
    '''
    if not isinstance(mask, np.ndarray):
        maskr = mask.ReadAsArray()

    else:
        maskr = mask.copy()

    # Mask according to bit-packing described here:
    # https://landsat.usgs.gov/landsat-surface-reflectance-quality-assessment
    maskr = np.in1d(maskr.reshape((maskr.shape[0] * maskr.shape[1])), mask_values)\
        .reshape((1, maskr.shape[0], maskr.shape[1])).astype(np.int0)

    return maskr 

Example 17

def getTargetBox(target):
    minRect = cv2.minAreaRect(target)
    box = cv2.cv.BoxPoints(minRect)
    #box = np.int0(box) # convert points to ints
    return box 

Example 18

def validate_contour(contour, img, aspect_ratio_range, area_range):
    rect = cv2.minAreaRect(contour)
    img_width = img.shape[1]
    img_height = img.shape[0]
    box = cv2.boxPoints(rect) 
    box = np.int0(box)

    X = rect[0][0]
    Y = rect[0][1]
    angle = rect[2] 
    width = rect[1][0]
    height = rect[1][1]

    angle = (angle + 180) if width < height else (angle + 90)

    output=False
    
    if (width > 0 and height > 0) and ((width < img_width/2.0) and (height < img_width/2.0)):
    	aspect_ratio = float(width)/height if width > height else float(height)/width
        if (aspect_ratio >= aspect_ratio_range[0] and aspect_ratio <= aspect_ratio_range[1]):
        	if((height*width > area_range[0]) and (height*width < area_range[1])):

        		box_copy = list(box)
        		point = box_copy[0]
        		del(box_copy[0])
        		dists = [((p[0]-point[0])**2 + (p[1]-point[1])**2) for p in box_copy]
        		sorted_dists = sorted(dists)
        		opposite_point = box_copy[dists.index(sorted_dists[1])]
        		tmp_angle = 90

        		if abs(point[0]-opposite_point[0]) > 0:
        			tmp_angle = abs(float(point[1]-opposite_point[1]))/abs(point[0]-opposite_point[0])
        			tmp_angle = rad_to_deg(math.atan(tmp_angle))

        		if tmp_angle <= 45:
        			output = True
    return output 

Example 19

def bboxes_to_xys(bboxes, image_shape):
    """Convert Seglink bboxes to xys, i.e., eight points
    The `image_shape` is used to to make sure all points return are valid, i.e., within image area
    """
    if len(bboxes) == 0:
        return []
    
    assert np.ndim(bboxes) == 2 and np.shape(bboxes)[-1] == 5, 'invalid `bboxes` param with shape =  ' + str(np.shape(bboxes))
    
    h, w = image_shape[0:2]
    def get_valid_x(x):
        if x < 0:
            return 0
        if x >= w:
            return w - 1
        return x
    
    def get_valid_y(y):
        if y < 0:
            return 0
        if y >= h:
            return h - 1
        return y
    
    xys = np.zeros((len(bboxes), 8))
    for bbox_idx, bbox in enumerate(bboxes):
        bbox = ((bbox[0], bbox[1]), (bbox[2], bbox[3]), bbox[4])
        points = cv2.cv.BoxPoints(bbox)
        points = np.int0(points)
        for i_xy, (x, y) in enumerate(points):
            x = get_valid_x(x)
            y = get_valid_y(y)
            points[i_xy, :] = [x, y]
        points = np.reshape(points, -1)
        xys[bbox_idx, :] = points
    return xys 

Example 20

def draw_markers(img,markers):
    for m in markers:
        centroid = np.array(m['centroid'],dtype=np.float32)
        origin = np.array(m['verts'][0],dtype=np.float32)
        hat = np.array([[[0,0],[0,1],[.5,1.25],[1,1],[1,0]]],dtype=np.float32)
        hat = cv2.perspectiveTransform(hat,m_marker_to_screen(m))
        if m['id_confidence']>.9:
            cv2.polylines(img,np.int0(hat),color = (0,0,255),isClosed=True)
        else:
            cv2.polylines(img,np.int0(hat),color = (0,255,0),isClosed=True)
        # cv2.polylines(img,np.int0(centroid),color = (255,255,int(255*m['id_confidence'])),isClosed=True,thickness=2)
        m_str = 'id: {:d}'.format(m['id'])
        org = origin.copy()
        # cv2.rectangle(img, tuple(np.int0(org+(-5,-13))[0,:]), tuple(np.int0(org+(100,30))[0,:]),color=(0,0,0),thickness=-1)
        cv2.putText(img,m_str,tuple(np.int0(org)[0,:]),fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.4, color=(0,0,255))
        if 'id_confidence' in m:
            m_str = 'idc: {:.3f}'.format(m['id_confidence'])
            org += (0, 12)
            cv2.putText(img,m_str,tuple(np.int0(org)[0,:]),fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.4, color=(0,0,255))
        if 'loc_confidence' in m:
            m_str = 'locc: {:.3f}'.format(m['loc_confidence'])
            org += (0, 12 )
            cv2.putText(img,m_str,tuple(np.int0(org)[0,:]),fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.4, color=(0,0,255))
        if 'frames_since_true_detection' in m:
            m_str = 'otf: {}'.format(m['frames_since_true_detection'])
            org += (0, 12 )
            cv2.putText(img,m_str,tuple(np.int0(org)[0,:]),fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.4, color=(0,0,255))
        if 'opf_vel' in m:
            m_str = 'otf: {}'.format(m['opf_vel'])
            org += (0, 12 )
            cv2.putText(img,m_str,tuple(np.int0(org)[0,:]),fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.4, color=(0,0,255)) 

Example 21

def __init__(self, fname=None, include_orth=True, include_pols=True):
        if fname is None:
            # fname is the name of the file to read in the design matrix
            self.design = np.zeros([0, 0])
            self.n_col = 0
            # number of columns (conditions) in the design matrix
            self.column_types = np.ones(0)
            self.n_basis = 0
            self.n_stim = 0
            self.n_orth = 0
            self.StimLabels = []
        else:
            # isAFNI = re.match(r'.+[.](1D|1d|txt)$', fname)
            filename, ext = os.path.splitext(fname)
            # We assume all AFNI 1D files have extension of 1D or 1d or txt
            if ext in ['.1D', '.1d', '.txt']:
                self.read_afni(fname=fname)

        self.include_orth = include_orth
        self.include_pols = include_pols
        # The two flags above dictates whether columns corresponding to
        # baseline drift modeled by polynomial functions of time and
        # columns corresponding to other orthogonal signals (usually motion)
        # are included in nuisance regressors.
        self.cols_task = np.where(self.column_types == 1)[0]
        self.design_task = self.design[:, self.cols_task]
        if np.ndim(self.design_task) == 1:
            self.design_task = self.design_task[:, None]
        # part of the design matrix related to task conditions.
        self.n_TR = np.size(self.design_task, axis=0)
        self.cols_nuisance = np.array([])
        if self.include_orth:
            self.cols_nuisance = np.int0(
                np.sort(np.append(self.cols_nuisance,
                                  np.where(self.column_types == 0)[0])))
        if self.include_pols:
            self.cols_nuisance = np.int0(
                np.sort(np.append(self.cols_nuisance,
                                  np.where(self.column_types == -1)[0])))
        if np.size(self.cols_nuisance) > 0:
            self.reg_nuisance = self.design[:, self.cols_nuisance]
            if np.ndim(self.reg_nuisance) == 1:
                self.reg_nuisance = self.reg_nuisance[:, None]
        else:
            self.reg_nuisance = None
        # Nuisance regressors for motion, baseline, etc. 

Example 22

def _find_array_button_thing(self):
        """ Find the array button on the solar array box """

        """ This uses color to determine if we have a choke """
        lower = np.array([0, 0, 60], dtype = "uint8")
        upper = np.array([20, 20, 255], dtype = "uint8")
        mask = cv2.inRange(self.img, lower, upper)

        blurred = cv2.GaussianBlur(mask, (5, 5), 0)
        thresh = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]

        contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        contours = contours[0] if is_cv2() else contours[1]

        debug_img = None
        if self.debug:
            debug_img = self.img.copy()

        button_box = None
        for c in contours:
            box = cv2.boundingRect(c)

            if button_box is None:
                button_box = box
            else:
                button_box = self._union_box(deepcopy(button_box), box)

        if button_box is None:
            return

        top,bottom,left,right,center = self.find_dimensions(np.int0(np.array(self._bound_to_boxpoints(button_box))))
        if top is None or left is None or center is None:
            return None

        height = self.find_distance(top, bottom)
        width = self.find_distance(left, right)

        if self.debug:
            for c in contours:
                cv2.drawContours(debug_img, [c], -1, (0, 255, 0), 2)

            cv2.circle(debug_img, top, 5, (255, 255, 0))
            cv2.circle(debug_img, bottom, 5, (255, 255, 0))
            cv2.circle(debug_img, left, 5, (255, 255, 0))
            cv2.circle(debug_img, right, 5, (255, 255, 0))
            cv2.rectangle(debug_img, (button_box[0], button_box[1]),
                    (button_box[0] + button_box[2], button_box[1] + button_box[3]), (128, 0, 128), 2)
            #cv2.circle(debug_img, center, 5, (255, 255, 0))

            cv2.imshow("button picture", debug_img)
            cv2.setMouseCallback("button picture", self.handle_mouse)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        self.array_button = Thing(height, width, center, None)
        self.array_button.set_array_button()
        self.array_button.computed_center = self.compute_center(left, right, top, bottom)
        self.things.append(self.array_button) 

Example 23

def _find_a_thing(self, c, min_height, max_height, min_width, max_width, max_distance, debug_img=None):
        rect = cv2.minAreaRect(c)
        box = cv2.cv.BoxPoints(rect) if is_cv2() else cv2.boxPoints(rect)

        top,bottom,left,right,center = self.find_dimensions(np.int0(np.array(box)))

        if top is None or left is None or center is None:
            return None

        vertical = self.find_distance(top, bottom)
        horizontal = self.find_distance(left, right)
        away = self.find_distance(center, None)

        if vertical > horizontal:
            height = vertical
            width = horizontal
            flipped = False
        else:
            height = horizontal
            width = vertical
            flipped = True

        if height < min_height or height > max_height:
            return None

        if width < min_width or width > max_height:
            return None

        if away > max_distance:
            return None

        # This page was helpful in understanding angle
        # https://namkeenman.wordpress.com/2015/12/18/open-cv-determine-angle-of-rotatedrect-minarearect/
        angle = rect[2]
        if rect[1][0] < rect[1][1]:
            angle -= 90.0

        if debug_img is not None:
            x,y,w,h = cv2.boundingRect(c)
            cv2.drawContours(debug_img, [c], -1, (0, 255, 0), 2)
            cv2.drawContours(debug_img, [np.int0(np.array(box))], -1, (0, 0, 255), 2)
            cv2.rectangle(debug_img,(x,y),(x+w,y+h),(255,0,0),2)

            cv2.circle(debug_img, top, 5, (255, 255, 0))
            cv2.circle(debug_img, bottom, 5, (255, 255, 0))
            cv2.circle(debug_img, left, 5, (255, 255, 0))
            cv2.circle(debug_img, right, 5, (255, 255, 0))
            cv2.circle(debug_img, center, 5, (255, 255, 0))


        return Thing(height, width, center, angle) 

Example 24

def get_contours(orig_image):
    """
    Get edge points (hopefully corners) from the given opencv image (called
    contours in opencv)

    Parameters:
        :param: `orig_image` - the thresholded image from which to find contours
    """
    new_image = numpy.copy(orig_image)
    # cv2.imshow("Vision", new_image)
    # cv2.waitKey(1000)
    new_image, contours, hierarchy = cv2.findContours(new_image,
                                                      cv2.RETR_EXTERNAL,
                                                      cv2.CHAIN_APPROX_SIMPLE)
    # print(len(contours))
    # print(len(contours[0]))
    # print(len(contours[0][0]))
    # print(len(contours[0][0][0]))
    largest_contour = 0
    most_matching = 0
    min_score = 0
    max_area = 0
    if len(contours) > 1:
        print("Length of contours:", len(contours))
        max_area = cv2.contourArea(contours[0])
        min_score = average_goal_matching(contours[0])
        for i in range(1, len(contours)):
            # print(contours[i])
            current_score = average_goal_matching(contours[i])
            current_area = cv2.contourArea(contours[i])
            if current_area > max_area:
                max_area = current_area
                largest_contour = i
            if current_score < min_score and current_score != 0 and current_area > 300 and current_area < 1500:
                min_score = current_score
                most_matching = i
    elif len(contours) == 0:
        raise GoalNotFoundException("Goal not found!")
    if min_score >= 9999999999999999:
        raise GoalNotFoundException("Goal not found!")
    print("largest_contour:", largest_contour)
    print("Area:", max_area)
    # print("largest_contour:", largest_contour)
    print("Most matching:", most_matching)
    print("Score:", min_score)
    print("Area of most matching:", cv2.contourArea(contours[most_matching]))

    rect = cv2.minAreaRect(contours[most_matching])
    box = cv2.boxPoints(rect)
    box = numpy.int0(box)
    # print(box)
    return numpy.array(contours[most_matching]), box 

Example 25

def detectAllVertices(self, testImg):
        # Detecting vertices on the newly constructed board
        self.gray = cv2.cvtColor(testImg, cv2.COLOR_BGR2GRAY)

        tempVertices = cv2.goodFeaturesToTrack(self.gray, int(self.FINAL_VERTICES_COUNT), 0.01, 10)
        tempVertices = np.int0(tempVertices)

        newVertices = []

        for i in tempVertices:
            x, y = i.ravel()
            newVertices.append((x, y))

        # Matrix to store coordinates of vertices on the board
        self.ALL_VERTICES = [[(0, 0) for x in range(self.FACTOR + 2)] for x in range(self.FACTOR + 2)]

        # Filling the matrix
        self.ALL_VERTICES[0][0] = (self.CORNERS[1])

        for i in range(0, self.FACTOR):
            for j in range(0, self.FACTOR):
                predicted_x = self.ALL_VERTICES[i][j][0] + int(
                    (self.OUTER_VERTICES[2][self.FACTOR - i][0] - self.OUTER_VERTICES[0][i][0]) / 8)
                predicted_y = self.ALL_VERTICES[i][j][1] + int(
                    (self.OUTER_VERTICES[3][self.FACTOR - i][1] - self.OUTER_VERTICES[1][i][1]) / 8)

                minn_dist = self.INT_MAX

                for point in newVertices:
                    this_dist = Geometry.getPointsDistance(point, (predicted_x, self.ALL_VERTICES[i][j][1]))
                    if this_dist < minn_dist:
                        self.ALL_VERTICES[i][j + 1] = point
                        minn_dist = this_dist

                minn_dist = self.INT_MAX

                for point in newVertices:
                    this_dist = Geometry.getPointsDistance(point, (self.ALL_VERTICES[i][j][0], predicted_y))
                    if this_dist < minn_dist:
                        self.ALL_VERTICES[i + 1][j] = point;
                        minn_dist = this_dist

        self.ALL_VERTICES[self.FACTOR][self.FACTOR] = (self.CORNERS[3]) 

Example 26

def image_callback(self, msg):

      # convert ROS image to OpenCV image
      try:
         image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
      except CvBridgeError as e:
         print(e)

      # create hsv image of scene
      hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

      # find pink objects in the image
      lower_pink = numpy.array([139, 0, 240], numpy.uint8)
      upper_pink = numpy.array([159, 121, 255], numpy.uint8)
      mask = cv2.inRange(hsv, lower_pink, upper_pink)

      # dilate and erode with kernel size 11x11
      cv2.morphologyEx(mask, cv2.MORPH_CLOSE, numpy.ones((11,11))) 

      # find all of the contours in the mask image
      contours, heirarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
      self.contourLength  = len(contours)

      # Check for at least one target found
      if self.contourLength < 1:
         print "No target found"

      else:                       # target found

         ## Loop through all of the contours, and get their areas
         area = [0.0]*len(contours)
         for i in range(self.contourLength):
            area[i] = cv2.contourArea(contours[i])

         #### Target #### the largest "pink" object
         target_image = contours[area.index(max(area))]

         # Using moments find the center of the object and draw a red outline around the object
         target_m = cv2.moments(target_image)
         self.target_u = int(target_m['m10']/target_m['m00'])
         self.target_v = int(target_m['m01']/target_m['m00'])
         points = cv2.minAreaRect(target_image)
         box = cv2.cv.BoxPoints(points)
         box = numpy.int0(box)
         cv2.drawContours(image, [box], 0, (0, 0, 255), 2)
         rospy.loginfo("Center of target is x at %d and y at %d", int(self.target_u), int(self.target_v))

         self.target_found = True               # set flag for depth_callback processing

         # show image with target outlined with a red rectangle
         cv2.imshow ("Target", image)
         cv2.waitKey(3)

   # This callback function handles processing Kinect depth image, looking for the depth value 
   #   at the location of the center of the pink target. 

Example 27

def binary_mask(rast, mask, nodata=-9999, invert=False):
    '''
    Applies an arbitrary, binary mask (data in [0,1]) where pixels with
    a value of 1 are pixels to be masked out. Arguments:
        rast    A gdal.Dataset or a NumPy array
        mask    A gdal.Dataset or a NumPy array
        nodata  The NoData value; defaults to -9999.
        invert  Invert the mask? (tranpose meaning of 0 and 1); defaults to False.
    '''
    # Can accept either a gdal.Dataset or numpy.array instance
    if not isinstance(rast, np.ndarray):
        rastr = rast.ReadAsArray()

    else:
        rastr = rast.copy()

    if not isinstance(mask, np.ndarray):
        maskr = mask.ReadAsArray()

    else:
        maskr = mask.copy()

    if not np.alltrue(np.equal(rastr.shape[-2:], maskr.shape[-2:])):
        raise ValueError('Raster and mask do not have the same shape')

    # Convert Boolean arrays to ones and zeros
    if maskr.dtype == bool:
        maskr = maskr.astype(np.int0)

    # Transform into a "1-band" array and apply the mask
    if maskr.shape != rastr.shape:
        maskr = maskr.reshape((1, maskr.shape[-2], maskr.shape[-1]))\
            .repeat(rastr.shape[0], axis=0) # Copy the mask across the "bands"

    # TODO Compare to place(), e.g.,
    # np.place(rastr, mask.repeat(rastr.shape[0], axis=0), (nodata,))
    # Mask out areas that match the mask (==1)
    if invert:
        rastr[maskr < 1] = nodata

    else:
        rastr[maskr > 0] = nodata

    return rastr 

Example 28

def filterContoursFancy(contours, image=None):
	if len(contours) == 0:
		return []

	numContours = len(contours)
	areas = np.array([cv2.contourArea(contour) for contour in contours])

	boundingRects = [cv2.boundingRect(contour) for contour in contours]
	widths, heights, positions = boundingInfo(boundingRects)

	rotatedRects = [cv2.minAreaRect(contour) for contour in contours]
	if config.withOpenCV3:
		rotatedBoxes = [np.int0(cv2.boxPoints(rect)) for rect in rotatedRects]
	else:
		rotatedBoxes = [np.int0(cv2.cv.BoxPoints(rect)) for rect in rotatedRects]
	rotatedAreas = [cv2.contourArea(box) for box in rotatedBoxes]

	sizeScores = [size(area)for area in areas]
	ratioScores = ratios(widths, heights)
	rotationScores = [rotation(rect) for rect in rotatedRects]
	rectangularScores = [distToPolygon(contour, poly) for contour,poly in zip(contours, rotatedBoxes)]
	areaScores = polygonAreaDiff(areas, rotatedAreas)
	quadScores = [Quadrify(contour) for contour in contours]

	rectangularScores = np.divide(rectangularScores, widths)

	scores = np.array([sizeScores, ratioScores, rotationScores, rectangularScores, areaScores, quadScores])
	contourScores = np.dot(weights, scores)

	correctInds, incorrectInds = sortedInds(contourScores)
	correctContours = np.array(contours)[correctInds]

	if config.extra_debug:
		print "size, ratio, rotation, rectangular, area, quad"
		print "Weights:", weights
		print "Scores: ", contourScores
		print np.average(scores, axis=1)
		if len(incorrectInds) != 0:
			print "AVG, WORST", test(scores, correctInds, incorrectInds)
		for i in range(numContours):
			print "CONTOUR " + str(i)
			print np.multiply(scores[:, i], weights) #newWeights
			print contourScores[i]
			if image:
				img = copy.deepcopy(image)
				Printing.drawImage(img, contours[:i] + contours[i+1:], contours[i], False)
				Printing.display(img, "contour " + str(i), doResize=True)
			cv2.waitKey(0)
		cv2.destroyAllWindows()
	return correctContours 

Example 29

def filterContoursAutocalibrate(contours, image=None):
	if len(contours) == 0:
		return []

	numContours = len(contours)
	areas = np.array([cv2.contourArea(contour) for contour in contours])

	boundingRects = [cv2.boundingRect(contour) for contour in contours]
	widths, heights, positions = boundingInfo(boundingRects)

	rotatedRects = [cv2.minAreaRect(contour) for contour in contours]
	if config.withOpenCV3:
		rotatedBoxes = [np.int0(cv2.boxPoints(rect)) for rect in rotatedRects]
	else:
		rotatedBoxes = [np.int0(cv2.cv.BoxPoints(rect)) for rect in rotatedRects]
	rotatedAreas = [cv2.contourArea(box) for box in rotatedBoxes]

	sizeScores = [size(area)for area in areas]
	ratioScores = ratios(widths, heights)
	rotationScores = [rotation(rect) for rect in rotatedRects]
	rectangularScores = [distToPolygon(contour, poly) for contour,poly in zip(contours, rotatedBoxes)]
	areaScores = polygonAreaDiff(areas, rotatedAreas)
	quadScores = [Quadrify(contour) for contour in contours]

	rectangularScores = np.divide(rectangularScores, widths)

	scores = np.array([sizeScores, ratioScores, rotationScores, rectangularScores, areaScores, quadScores])
	contourScores = np.dot(weights, scores)

	correctInds, incorrectInds = sortedInds(contourScores)
	correctContours = np.array(contours)[correctInds]

	averageScore = 0
	for i in range(numContours):
		averageScore += sizeScores[i]
		averageScore +=  ratioScores[i]
		averageScore +=  rotationScores[i]
		averageScore +=  rectangularScores[i]
		averageScore +=  areaScores[i]
		averageScore +=  quadScores[i]
	averageScore /= numContours
	return averageScore 

Example 30

def image_callback(self, msg):

      # convert ROS image to OpenCV image
      try:
         image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
      except CvBridgeError as e:
         print(e)

      # create hsv image of scene
      hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

      # find pink objects in the image
      lower_pink = numpy.array([139, 0, 240], numpy.uint8)
      upper_pink = numpy.array([159, 121, 255], numpy.uint8)
      mask = cv2.inRange(hsv, lower_pink, upper_pink)

      # dilate and erode with kernel size 11x11
      cv2.morphologyEx(mask, cv2.MORPH_CLOSE, numpy.ones((11,11))) 

      # find all of the contours in the mask image
      contours, heirarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
      self.contourLength  = len(contours)

      # Check for at least one target found
      if self.contourLength < 1:
         print "No target found"

      else:                       # target found

         ## Loop through all of the contours, and get their areas
         area = [0.0]*len(contours)
         for i in range(self.contourLength):
            area[i] = cv2.contourArea(contours[i])

         #### Target #### the largest "pink" object
         target_image = contours[area.index(max(area))]

         # Using moments find the center of the object and draw a red outline around the object
         target_m = cv2.moments(target_image)
         self.target_u = int(target_m['m10']/target_m['m00'])
         self.target_v = int(target_m['m01']/target_m['m00'])
         points = cv2.minAreaRect(target_image)
         box = cv2.cv.BoxPoints(points)
         box = numpy.int0(box)
         cv2.drawContours(image, [box], 0, (0, 0, 255), 2)
         rospy.loginfo("Center of target is x at %d and y at %d", int(self.target_u), int(self.target_v))

         self.target_found = True               # set flag for depth_callback processing

         # show image with target outlined with a red rectangle
         cv2.imshow ("Target", image)
         cv2.waitKey(3)

   # This callback function handles processing Kinect depth image, looking for the depth value 
   #   at the location of the center of the pink target. 

Example 31

def detect_barcode(imageval):


	# load the image and convert it to grayscale

	file_bytes = np.asarray(bytearray(imageval), dtype=np.uint8)
        img_data_ndarray = cv2.imdecode(file_bytes, cv2.CV_LOAD_IMAGE_UNCHANGED)
	gray = cv2.cvtColor(img_data_ndarray, cv2.COLOR_BGR2GRAY)

	# compute the Scharr gradient magnitude representation of the images
	# in both the x and y direction
	gradX = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 1, dy = 0, ksize = -1)
	gradY = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 0, dy = 1, ksize = -1)

	# subtract the y-gradient from the x-gradient
	gradient = cv2.subtract(gradX, gradY)
	gradient = cv2.convertScaleAbs(gradient)

	# blur and threshold the image
	blurred = cv2.blur(gradient, (9, 9))
	(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)

	# construct a closing kernel and apply it to the thresholded image
	kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
	closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

	# perform a series of erosions and dilations
	closed = cv2.erode(closed, None, iterations = 4)
	closed = cv2.dilate(closed, None, iterations = 4)

	# find the contours in the thresholded image, then sort the contours
	# by their area, keeping only the largest one
	(cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL,
		cv2.CHAIN_APPROX_SIMPLE)
	c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]

	# compute the rotated bounding box of the largest contour
	rect = cv2.minAreaRect(c)
	box = np.int0(cv2.cv.BoxPoints(rect))

	# draw a bounding box arounded the detected barcode and display the
	# image
	cv2.drawContours(img_data_ndarray, [box], -1, (0, 255, 0), 3)
	# cv2.imshow("Image", image)
	#cv2.imwrite("uploads/output-"+ datetime.datetime.now().strftime("%Y-%m-%d-%H:%M:%S")  +".jpg",image)
	# cv2.waitKey(0)

	#outputfile = "uploads/output-" + time.strftime("%H:%M:%S") + ".jpg"
	outputfile = "uploads/output.jpg"

	cv2.imwrite(outputfile,img_data_ndarray) 
点赞