The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def _load_data(self, data_id): imgpath = osp.join( self.data_dir, 'JPEGImages/{}.jpg'.format(data_id)) seg_imgpath = osp.join( self.data_dir, 'SegmentationClass/{}.png'.format(data_id)) ins_imgpath = osp.join( self.data_dir, 'SegmentationObject/{}.png'.format(data_id)) img = cv2.imread(imgpath) img = img.transpose((2, 0, 1)) seg_img = PIL.Image.open(seg_imgpath) seg_img = np.array(seg_img, dtype=np.int32) seg_img[seg_img == 255] = -1 ins_img = PIL.Image.open(ins_imgpath) ins_img = np.array(ins_img, dtype=np.int32) ins_img[ins_img == 255] = -1 ins_img[np.isin(seg_img, [-1, 0])] = -1 return img, seg_img, ins_img
Example 2
def _load_data(self, data_id): imgpath = osp.join( self.data_dir, 'img/{}.jpg'.format(data_id)) seg_imgpath = osp.join( self.data_dir, 'cls/{}.mat'.format(data_id)) ins_imgpath = osp.join( self.data_dir, 'inst/{}.mat'.format(data_id)) img = cv2.imread(imgpath, cv2.IMREAD_COLOR) img = img.transpose((2, 0, 1)) mat = scipy.io.loadmat(seg_imgpath) seg_img = mat['GTcls'][0]['Segmentation'][0].astype(np.int32) seg_img = np.array(seg_img, dtype=np.int32) seg_img[seg_img == 255] = -1 mat = scipy.io.loadmat(ins_imgpath) ins_img = mat['GTinst'][0]['Segmentation'][0].astype(np.int32) ins_img[ins_img == 255] = -1 ins_img[np.isin(seg_img, [-1, 0])] = -1 return img, seg_img, ins_img
Example 3
def crossover(self, parent, pop): if np.random.rand() < self.cross_rate: i_ = np.random.randint(0, self.pop_size, size=1) # select another individual from pop cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool) # choose crossover points keep_city = parent[~cross_points] # find the city number swap_city = pop[i_, np.isin(pop[i_].ravel(), keep_city, invert=True)] parent[:] = np.concatenate((keep_city, swap_city)) return parent
Example 4
def create_ignore_mask(self, postags, ignore_punct=True): if ignore_punct: mask = np.isin(postags, self._PUNCTS).astype(np.int32) else: mask = np.zeros(len(postags), np.int32) mask[0] = 1 return mask
Example 5
def binary_volume_opening(vol, minvol): lb_vol, num_objs = label(vol) lbs = np.arange(1, num_objs + 1) v = labeled_comprehension(lb_vol > 0, lb_vol, lbs, np.sum, np.int, 0) ix = np.isin(lb_vol, lbs[v >= minvol]) newvol = np.zeros(vol.shape) newvol[ix] = vol[ix] return newvol
Example 6
def _print_df_scores(df_scores, score_types, indent=''): """Pretty print the scores dataframe. Parameters ---------- df_scores : pd.DataFrame the score dataframe score_types : list of score types a list of score types to use indent : str, default='' indentation if needed """ try: # try to re-order columns/rows in the printed array # we may not have all train, valid, test, so need to select index_order = np.array(['train', 'valid', 'test']) ordered_index = index_order[np.isin(index_order, df_scores.index)] df_scores = df_scores.loc[ ordered_index, [score_type.name for score_type in score_types]] except Exception: _print_warning("Couldn't re-order the score matrix..") with pd.option_context("display.width", 160): df_repr = repr(df_scores) df_repr_out = [] for line, color_key in zip(df_repr.splitlines(), [None, None] + list(df_scores.index.values)): if line.strip() == 'step': continue if color_key is None: # table header line = stylize(line, fg(fg_colors['title']) + attr('bold')) if color_key is not None: tokens = line.split() tokens_bak = tokens[:] if 'official_' + color_key in fg_colors: # line label and official score bold & bright label_color = fg(fg_colors['official_' + color_key]) tokens[0] = stylize(tokens[0], label_color + attr('bold')) tokens[1] = stylize(tokens[1], label_color + attr('bold')) if color_key in fg_colors: # other scores pale tokens[2:] = [stylize(token, fg(fg_colors[color_key])) for token in tokens[2:]] for token_from, token_to in zip(tokens_bak, tokens): line = line.replace(token_from, token_to) line = indent + line df_repr_out.append(line) print('\n'.join(df_repr_out))