The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def sampleYes(array, N): """Sample without replacement N points from an array of XY coordinates. Args: array: 2D numpy array of XY points. N: Integer number of points to sample without replacement from input array. Returns: Tuple of (sampled points, unsampled points). """ # array is a Mx2 array of X,Y points m, n = array.shape allidx = np.arange(0, m) sampleidx = np.random.choice(allidx, size=N, replace=False) nosampleidx = np.setxor1d(allidx, sampleidx) sampled = array[sampleidx, :] notsampled = array[nosampleidx, :] return (sampled, notsampled)
Example 2
def test_boolean_spheres_overlap(): r"""Test to make sure that boolean objects (spheres, overlap) behave the way we expect. Test overlapping spheres. """ ds = fake_amr_ds() sp1 = ds.sphere([0.45, 0.45, 0.45], 0.15) sp2 = ds.sphere([0.55, 0.55, 0.55], 0.15) # Get indices of both. i1 = sp1["index","morton_index"] i2 = sp2["index","morton_index"] # Make some booleans bo1 = sp1 & sp2 bo2 = sp1 - sp2 bo3 = sp1 | sp2 bo4 = ds.union([sp1, sp2]) bo5 = ds.intersection([sp1, sp2]) # Now make sure the indices also behave as we expect. lens = np.intersect1d(i1, i2) apple = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, lens) assert_array_equal(b2, apple) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = sp1 ^ sp2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 3
def test_boolean_regions_overlap(): r"""Test to make sure that boolean objects (regions, overlap) behave the way we expect. Test overlapping regions. """ ds = fake_amr_ds() re1 = ds.region([0.55]*3, [0.5]*3, [0.6]*3) re2 = ds.region([0.6]*3, [0.55]*3, [0.65]*3) # Get indices of both. i1 = re1["index","morton_index"] i2 = re2["index","morton_index"] # Make some booleans bo1 = re1 & re2 bo2 = re1 - re2 bo3 = re1 | re2 bo4 = ds.union([re1, re2]) bo5 = ds.intersection([re1, re2]) # Now make sure the indices also behave as we expect. cube = np.intersect1d(i1, i2) bite_cube = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, cube) assert_array_equal(b2, bite_cube) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = re1 ^ re2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 4
def test_boolean_ellipsoids_overlap(): r"""Test to make sure that boolean objects (ellipsoids, overlap) behave the way we expect. Test overlapping ellipsoids. """ ds = fake_amr_ds() ell1 = ds.ellipsoid([0.45]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1) ell2 = ds.ellipsoid([0.55]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1) # Get indices of both. i1 = ell1["index","morton_index"] i2 = ell2["index","morton_index"] # Make some booleans bo1 = ell1 & ell2 bo2 = ell1 - ell2 bo3 = ell1 | ell2 bo4 = ds.union([ell1, ell2]) bo5 = ds.intersection([ell1, ell2]) # Now make sure the indices also behave as we expect. overlap = np.intersect1d(i1, i2) diff = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, overlap) assert_array_equal(b2, diff) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = ell1 ^ ell2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 5
def test_boolean_slices_overlap(): r"""Test to make sure that boolean objects (slices, overlap) behave the way we expect. Test overlapping slices. """ ds = fake_amr_ds() sl1 = ds.r[:,:,0.25] sl2 = ds.r[:,0.75,:] # Get indices of both. i1 = sl1["index","morton_index"] i2 = sl2["index","morton_index"] # Make some booleans bo1 = sl1 & sl2 bo2 = sl1 - sl2 bo3 = sl1 | sl2 bo4 = ds.union([sl1, sl2]) bo5 = ds.intersection([sl1, sl2]) # Now make sure the indices also behave as we expect. line = np.intersect1d(i1, i2) orig = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, line) assert_array_equal(b2, orig) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = sl1 ^ sl2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 6
def sampleNo(xvar, yvar, N, avoididx): """ Sample from pixels in mesh, excluding yes pixels and already sampled no pixels. Args: xvar: Numpy array of centers of all columns in mesh. yvar: Numpy array of centers of all rows in mesh. N: Number of no pixels to sample. avoididx: 1D array of indices from mesh that should NOT be sampled from. Initially this will be the array of indices where the yes pixels are. Returns: Randomly chosen list of tuples of (x,y) coordinate points that are outside polygons. """ # flattened array of all indices in mesh allidx = np.arange(0, len(xvar) * len(yvar)) noidx = np.setxor1d(allidx, avoididx) # allidx - avoididx nosampleidx = np.random.choice(noidx, size=N, replace=False) newavoididx = np.sort(np.hstack((avoididx, nosampleidx))) rowidx, colidx = np.unravel_index(nosampleidx, (len(yvar), len(xvar))) samples = [] for row, col in zip(rowidx, colidx): xp = xvar[col] yp = yvar[row] samples.append((xp, yp)) return (samples, newavoididx)
Example 7
def setxor1d(ar1, ar2, assume_unique=False): """ Find the set exclusive-or of two arrays. Return the sorted, unique values that are in only one (not both) of the input arrays. Parameters ---------- ar1, ar2 : array_like Input arrays. assume_unique : bool If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. Returns ------- setxor1d : ndarray Sorted 1D array of unique values that are in only one of the input arrays. Examples -------- >>> a = np.array([1, 2, 3, 2, 4]) >>> b = np.array([2, 3, 5, 7, 5]) >>> np.setxor1d(a,b) array([1, 4, 5, 7]) """ if not assume_unique: ar1 = unique(ar1) ar2 = unique(ar2) aux = np.concatenate((ar1, ar2)) if aux.size == 0: return aux aux.sort() # flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) # flag2 = ediff1d( flag ) == 0 flag2 = flag[1:] == flag[:-1] return aux[flag2]
Example 8
def setxor1d(ar1, ar2, assume_unique=False): """ Find the set exclusive-or of two arrays. Return the sorted, unique values that are in only one (not both) of the input arrays. Parameters ---------- ar1, ar2 : array_like Input arrays. assume_unique : bool If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. Returns ------- setxor1d : ndarray Sorted 1D array of unique values that are in only one of the input arrays. Examples -------- >>> a = np.array([1, 2, 3, 2, 4]) >>> b = np.array([2, 3, 5, 7, 5]) >>> np.setxor1d(a,b) array([1, 4, 5, 7]) """ if not assume_unique: ar1 = unique(ar1) ar2 = unique(ar2) aux = np.concatenate((ar1, ar2)) if aux.size == 0: return aux aux.sort() # flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) # flag2 = ediff1d( flag ) == 0 flag2 = flag[1:] == flag[:-1] return aux[flag2]
Example 9
def test_boolean_spheres_no_overlap(): r"""Test to make sure that boolean objects (spheres, no overlap) behave the way we expect. Test non-overlapping spheres. This also checks that the original spheres don't change as part of constructing the booleans. """ ds = fake_amr_ds() sp1 = ds.sphere([0.25, 0.25, 0.25], 0.15) sp2 = ds.sphere([0.75, 0.75, 0.75], 0.15) # Store the original indices i1 = sp1["index","morton_index"] i1.sort() i2 = sp2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = sp1 & sp2 bo2 = sp1 - sp2 bo3 = sp1 | sp2 # also works with + bo4 = ds.union([sp1, sp2]) bo5 = ds.intersection([sp1, sp2]) # This makes sure the original containers didn't change. new_i1 = sp1["index","morton_index"] new_i1.sort() new_i2 = sp2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() assert_array_equal(b4, ii) bo6 = sp1 ^ sp2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 10
def test_boolean_regions_no_overlap(): r"""Test to make sure that boolean objects (regions, no overlap) behave the way we expect. Test non-overlapping regions. This also checks that the original regions don't change as part of constructing the booleans. """ ds = fake_amr_ds() re1 = ds.region([0.25]*3, [0.2]*3, [0.3]*3) re2 = ds.region([0.65]*3, [0.6]*3, [0.7]*3) # Store the original indices i1 = re1["index","morton_index"] i1.sort() i2 = re2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = re1 & re2 bo2 = re1 - re2 bo3 = re1 | re2 bo4 = ds.union([re1, re2]) bo5 = ds.intersection([re1, re2]) # This makes sure the original containers didn't change. new_i1 = re1["index","morton_index"] new_i1.sort() new_i2 = re2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1 ) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = re1 ^ re2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 11
def test_boolean_cylinders_no_overlap(): r"""Test to make sure that boolean objects (cylinders, no overlap) behave the way we expect. Test non-overlapping cylinders. This also checks that the original cylinders don't change as part of constructing the booleans. """ ds = fake_amr_ds() cyl1 = ds.disk([0.25]*3, [1, 0, 0], 0.1, 0.1) cyl2 = ds.disk([0.75]*3, [1, 0, 0], 0.1, 0.1) # Store the original indices i1 = cyl1["index","morton_index"] i1.sort() i2 = cyl2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = cyl1 & cyl2 bo2 = cyl1 - cyl2 bo3 = cyl1 | cyl2 bo4 = ds.union([cyl1, cyl2]) bo5 = ds.intersection([cyl1, cyl2]) # This makes sure the original containers didn't change. new_i1 = cyl1["index","morton_index"] new_i1.sort() new_i2 = cyl2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = cyl1 ^ cyl2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 12
def test_boolean_ellipsoids_no_overlap(): r"""Test to make sure that boolean objects (ellipsoids, no overlap) behave the way we expect. Test non-overlapping ellipsoids. This also checks that the original ellipsoids don't change as part of constructing the booleans. """ ds = fake_amr_ds() ell1 = ds.ellipsoid([0.25]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1) ell2 = ds.ellipsoid([0.75]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1) # Store the original indices i1 = ell1["index","morton_index"] i1.sort() i2 = ell2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = ell1 & ell2 bo2 = ell1 - ell2 bo3 = ell1 | ell2 bo4 = ds.union([ell1, ell2]) bo5 = ds.intersection([ell1, ell2]) # This makes sure the original containers didn't change. new_i1 = ell1["index","morton_index"] new_i1.sort() new_i2 = ell2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1 ) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = ell1 ^ ell2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 13
def test_boolean_mix_periodicity(): r"""Test that a hybrid boolean region behaves as we expect. This also tests nested logic and that periodicity works. """ ds = fake_amr_ds() re = ds.region([0.5]*3, [0.0]*3, [1]*3) # whole thing sp = ds.sphere([0.95]*3, 0.3) # wraps around cyl = ds.disk([0.05]*3, [1,1,1], 0.1, 0.4) # wraps around # Get original indices rei = re["index","morton_index"] spi = sp["index","morton_index"] cyli = cyl["index","morton_index"] # Make some booleans # whole box minux spherical bites at corners bo1 = re - sp # sphere plus cylinder bo2 = sp | cyl # a jumble, the region minus the sp+cyl bo3 = re - (sp | cyl) # Now make sure the indices also behave as we expect. bo4 = ds.union([re, sp, cyl]) bo5 = ds.intersection([re, sp, cyl]) expect = np.setdiff1d(rei, spi) ii = bo1["index","morton_index"] ii.sort() assert_array_equal(expect, ii) # expect = np.union1d(spi, cyli) ii = bo2["index","morton_index"] ii.sort() assert_array_equal(expect, ii) # expect = np.union1d(spi, cyli) expect = np.setdiff1d(rei, expect) ii = bo3["index","morton_index"] ii.sort() assert_array_equal(expect, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() ii = np.union1d(np.union1d(rei, cyli), spi) ii.sort() assert_array_equal(ii, b4) ii = np.intersect1d(np.intersect1d(rei, cyli), spi) ii.sort() assert_array_equal(ii, b5) bo6 = (re ^ sp) ^ cyl b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(np.setxor1d(rei, spi), cyli))
Example 14
def test_boolean_ray_region_no_overlap(): r"""Test to make sure that boolean objects (ray, region, no overlap) behave the way we expect. Test non-overlapping ray and region. This also checks that the original objects don't change as part of constructing the booleans. """ ds = fake_amr_ds() re = ds.box([0.25]*3, [0.75]*3) ra = ds.ray([0.1]*3, [0.1, 0.1, 0.9]) # Store the original indices i1 = re["index","morton_index"] i1.sort() i2 = ra["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = re & ra bo2 = re - ra bo3 = re | ra bo4 = ds.union([re, ra]) bo5 = ds.intersection([re, ra]) # This makes sure the original containers didn't change. new_i1 = re["index","morton_index"] new_i1.sort() new_i2 = ra["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1 ) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = re ^ ra b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 15
def test_boolean_ray_region_overlap(): r"""Test to make sure that boolean objects (ray, region, overlap) behave the way we expect. Test overlapping ray and region. This also checks that the original objects don't change as part of constructing the booleans. """ ds = fake_amr_ds() re = ds.box([0.25]*3, [0.75]*3) ra = ds.ray([0]*3, [1]*3) # Get indices of both. i1 = re["index","morton_index"] i2 = ra["index","morton_index"] # Make some booleans bo1 = re & ra bo2 = re - ra bo3 = re | ra bo4 = ds.union([re, ra]) bo5 = ds.intersection([re, ra]) # Now make sure the indices also behave as we expect. short_line = np.intersect1d(i1, i2) cube_minus_line = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, short_line) assert_array_equal(b2, cube_minus_line) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = re ^ ra b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 16
def test_boolean_rays_overlap(): r"""Test to make sure that boolean objects (rays, overlap) behave the way we expect. Test non-overlapping rays. """ ds = fake_amr_ds() ra1 = ds.ray([0]*3, [1]*3) ra2 = ds.ray([0]*3, [0.5]*3) # Get indices of both. i1 = ra1["index","morton_index"] i1.sort() i2 = ra2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = ra1 & ra2 bo2 = ra1 - ra2 bo3 = ra1 | ra2 bo4 = ds.union([ra1, ra2]) bo5 = ds.intersection([ra1, ra2]) # Now make sure the indices also behave as we expect. short_line = np.intersect1d(i1, i2) short_line_b = np.setdiff1d(i1, i2) full_line = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, short_line) assert_array_equal(b2, short_line_b) assert_array_equal(b3, full_line) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, i1) assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = ra1 ^ ra2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 17
def test_boolean_slices_no_overlap(): r"""Test to make sure that boolean objects (slices, no overlap) behave the way we expect. Test non-overlapping slices. This also checks that the original regions don't change as part of constructing the booleans. """ ds = fake_amr_ds() sl1 = ds.r[:,:,0.25] sl2 = ds.r[:,:,0.75] # Store the original indices i1 = sl1["index","morton_index"] i1.sort() i2 = sl2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = sl1 & sl2 bo2 = sl1 - sl2 bo3 = sl1 | sl2 bo4 = ds.union([sl1, sl2]) bo5 = ds.intersection([sl1, sl2]) # This makes sure the original containers didn't change. new_i1 = sl1["index","morton_index"] new_i1.sort() new_i2 = sl2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1 ) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = sl1 ^ sl2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 18
def test_boolean_ray_slice_no_overlap(): r"""Test to make sure that boolean objects (ray, slice, no overlap) behave the way we expect. Test non-overlapping ray and slice. This also checks that the original regions don't change as part of constructing the booleans. """ ds = fake_amr_ds() sl = ds.r[:,:,0.25] ra = ds.ray([0]*3, [0, 1, 0]) # Store the original indices i1 = sl["index","morton_index"] i1.sort() i2 = ra["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = sl & ra bo2 = sl - ra bo3 = sl | ra bo4 = ds.union([sl, ra]) bo5 = ds.intersection([sl, ra]) # This makes sure the original containers didn't change. new_i1 = sl["index","morton_index"] new_i1.sort() new_i2 = ra["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1 ) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = sl ^ ra b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 19
def test_boolean_ray_slice_overlap(): r"""Test to make sure that boolean objects (rays and slices, overlap) behave the way we expect. Test overlapping rays and slices. """ ds = fake_amr_ds() sl = ds.r[:,:,0.25] ra = ds.ray([0, 0, 0.25], [0, 1, 0.25]) # Get indices of both. i1 = sl["index","morton_index"] i1.sort() i2 = ra["index","morton_index"] i1.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = sl & ra bo2 = sl - ra bo3 = sl | ra bo4 = ds.union([sl, ra]) bo5 = ds.intersection([sl, ra]) # Now make sure the indices also behave as we expect. line = np.intersect1d(i1, i2) sheet_minus_line = np.setdiff1d(i1, i2) sheet = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, line) assert_array_equal(b2, sheet_minus_line) assert_array_equal(b3, sheet) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, i1) assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = sl ^ ra b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
Example 20
def setxor1d(ar1, ar2, assume_unique=False): """ Find the set exclusive-or of two arrays. Return the sorted, unique values that are in only one (not both) of the input arrays. Parameters ---------- ar1, ar2 : array_like Input arrays. assume_unique : bool If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. Returns ------- setxor1d : ndarray Sorted 1D array of unique values that are in only one of the input arrays. Examples -------- >>> a = np.array([1, 2, 3, 2, 4]) >>> b = np.array([2, 3, 5, 7, 5]) >>> np.setxor1d(a,b) array([1, 4, 5, 7]) """ if not assume_unique: ar1 = unique(ar1) ar2 = unique(ar2) aux = np.concatenate((ar1, ar2)) if aux.size == 0: return aux aux.sort() # flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) # flag2 = ediff1d( flag ) == 0 flag2 = flag[1:] == flag[:-1] return aux[flag2]
Example 21
def setxor1d(ar1, ar2, assume_unique=False): """ Find the set exclusive-or of two arrays. Return the sorted, unique values that are in only one (not both) of the input arrays. Parameters ---------- ar1, ar2 : array_like Input arrays. assume_unique : bool If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. Returns ------- setxor1d : ndarray Sorted 1D array of unique values that are in only one of the input arrays. Examples -------- >>> a = np.array([1, 2, 3, 2, 4]) >>> b = np.array([2, 3, 5, 7, 5]) >>> np.setxor1d(a,b) array([1, 4, 5, 7]) """ if not assume_unique: ar1 = unique(ar1) ar2 = unique(ar2) aux = np.concatenate((ar1, ar2)) if aux.size == 0: return aux aux.sort() # flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) # flag2 = ediff1d( flag ) == 0 flag2 = flag[1:] == flag[:-1] return aux[flag2]
Example 22
def setxor1d(ar1, ar2, assume_unique=False): """ Find the set exclusive-or of two arrays. Return the sorted, unique values that are in only one (not both) of the input arrays. Parameters ---------- ar1, ar2 : array_like Input arrays. assume_unique : bool If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. Returns ------- setxor1d : ndarray Sorted 1D array of unique values that are in only one of the input arrays. Examples -------- >>> a = np.array([1, 2, 3, 2, 4]) >>> b = np.array([2, 3, 5, 7, 5]) >>> np.setxor1d(a,b) array([1, 4, 5, 7]) """ if not assume_unique: ar1 = unique(ar1) ar2 = unique(ar2) aux = np.concatenate((ar1, ar2)) if aux.size == 0: return aux aux.sort() # flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) # flag2 = ediff1d( flag ) == 0 flag2 = flag[1:] == flag[:-1] return aux[flag2]
Example 23
def setxor1d(ar1, ar2, assume_unique=False): """ Find the set exclusive-or of two arrays. Return the sorted, unique values that are in only one (not both) of the input arrays. Parameters ---------- ar1, ar2 : array_like Input arrays. assume_unique : bool If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. Returns ------- setxor1d : ndarray Sorted 1D array of unique values that are in only one of the input arrays. Examples -------- >>> a = np.array([1, 2, 3, 2, 4]) >>> b = np.array([2, 3, 5, 7, 5]) >>> np.setxor1d(a,b) array([1, 4, 5, 7]) """ if not assume_unique: ar1 = unique(ar1) ar2 = unique(ar2) aux = np.concatenate((ar1, ar2)) if aux.size == 0: return aux aux.sort() # flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) # flag2 = ediff1d( flag ) == 0 flag2 = flag[1:] == flag[:-1] return aux[flag2]