python学习笔记之使用sklearn进行PCA数据降维

只能说scikit-learn实在是太强大了,三言两语就能搞定PCA

1.函数原型及参数说明

sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)  

主要参数

n_components:
意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n
类型:int 或者 string,缺省时默认为None,所有成分被保留。
赋值为int,比如n_components=1,将把原始数据降到一个维度。
赋值为string,比如n_components=’mle’,将自动选取特征个数n,使得满足所要求的方差百分比。

copy:
类型:bool,True或者False,缺省时默认为True。
意义:表示是否在运行算法时,将原始训练数据复制一份。若为True,则运行PCA算法后,原始训练数据的值不会有任何改变,因为是在原始数据的副本上进行运算;若为False,则运行PCA算法后,原始训练数据的 值会改,因为是在原始数据上进行降维计算。

whiten:
类型:bool,缺省时默认为False
意义:白化,使得每个特征具有相同的方差。

2.PCA属性

components_:返回具有最大方差的成分。

explained_variance_ratio_:返回 所保留的n个成分各自的方差百分比。

n_components_:返回所保留的成分个数n。

3.PCA对象的方法

fit(X,y=None)
fit()可以说是scikit-learn中通用的方法,每个需要训练的算法都会有fit()方法,它其实就是算法中的“训练”这一步骤。因为PCA是无监督学习算法,此处y自然等于None。
fit(X),表示用数据X来训练PCA模型。

函数返回值:调用fit方法的对象本身。比如pca.fit(X),表示用X对pca这个对象进行训练。

fit_transform(X)
用X来训练PCA模型,同时返回降维后的数据。
newX=pca.fit_transform(X),newX就是降维后的数据。

inverse_transform()
将降维后的数据转换成原始数据,X=pca.inverse_transform(newX)

transform(X)
将数据X转换成降维后的数据。当模型训练好后,对于新输入的数据,都可以用transform方法来降维。

PCA实例

#encoding = utf-8
import numpy as np
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

X=load_iris().data
pca = PCA(n_components=2)
pca.fit(X)
newX=pca.transform(X)
    原文作者:Chelsea_Dagger
    原文地址: https://www.jianshu.com/p/ceea7c1138bf
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞