今天尝试总结一下 tf.data 这个API的一些用法吧。之所以会用到这个API,是因为需要处理的数据量很大,而且数据均是分布式的存储在多台服务器上,所以没有办法采用传统的喂数据方式,而是运用了 tf.data 对数据进行了相应的预处理,并且最近正赶上总结需要,尝试写一下关于 tf.data 的一些用法,有错误的地方一定告诉我哈。
Tensorflow的数据读取
先来看一下Tensorflow的数据读取机制吧
这一篇文章对于 tensorflow的数据读取机制 讲解得很不错,大噶可以先看一下,有一个了解。
Dataset API是怎么用的呢
虽然上面的资料关于 tf.data 讲解得都很好,但是我没有找到一个很完整滴运用 tf.data.TextLineDataset() 和 tf.data.TFRecordDataset() 的例子,所以才想尝试写一写这篇总结。
MNIST的经典例子
本篇博客结合 mnist 的经典例子,针对不同的源数据:csv数据和tfrecord数据,分别运用 tf.data.TextLineDataset() 和 tf.data.TFRecordDataset() 创建不同的 Dataset 并运用四种不同的 Iterator ,分别是 单次,可初始化,可重新初始化,以及可馈送迭代器 的方式实现对源数据的预处理工作。
我将相关的资料放在了澜子的Github 上,欢迎互粉哇(星星眼)。其中包括了所需的 后缀名为csv和tfrecords的源数据 (data
的文件夹),以及在 jupyter notebook实现的具体代码 (tf_dataset_learn.ipynb
)。
如果有需要的同学可以直接
git clone https://github.com/lanhongvp/tensorflow_dataset_learn.git
然后用 jupyter 跑一跑看看输出,这样可以有一个比较直观的认识。关于 Git和Github 的使用,大噶可以看我VSCODE_GIT这一篇博客啦。接下来,针对MNIST例子做一个简单的说明吧。
tf.data.TFRecordDataset() & make_one_shot_iterator()
tf.data.TFRecordDataset() 输入参数直接是后缀名为tfrecords
的文件路径,正因如此,即可解决数据量过大,导致无法单机训练的问题。本篇博客中,文件路径即为/Users/honglan/Desktop/train_output.tfrecords
,此处是我自己电脑上的路径,大家可以 根据自己的需要修改为对应的文件路径。
make_one_shot_iterator() 即为单次迭代器,是最简单的迭代器形式,仅支持对数据集进行一次迭代,不需要显式初始化。
配合 MNIST数据集以及tf.data.TFRecordDataset(),实现代码如下。
# Validate tf.data.TFRecordDataset() using make_one_shot_iterator()
import tensorflow as tf
import numpy as np
num_epochs = 2
num_class = 10
sess = tf.Session()
# Use `tf.parse_single_example()` to extract data from a `tf.Example`
# protocol buffer, and perform any additional per-record preprocessing.
def parser(record):
keys_to_features = {
"image_raw": tf.FixedLenFeature((), tf.string, default_value=""),
"pixels": tf.FixedLenFeature((), tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
"label": tf.FixedLenFeature((), tf.int64,
default_value=tf.zeros([], dtype=tf.int64)),
}
parsed = tf.parse_single_example(record, keys_to_features)
# Parse the string into an array of pixels corresponding to the image
images = tf.decode_raw(parsed["image_raw"],tf.uint8)
images = tf.reshape(images,[28,28,1])
labels = tf.cast(parsed['label'], tf.int32)
labels = tf.one_hot(labels,num_class)
pixels = tf.cast(parsed['pixels'], tf.int32)
print("IMAGES",images)
print("LABELS",labels)
return {"image_raw": images}, labels
filenames = ["/Users/honglan/Desktop/train_output.tfrecords"]
# replace the filenames with your own path
dataset = tf.data.TFRecordDataset(filenames)
print("DATASET",dataset)
# Use `Dataset.map()` to build a pair of a feature dictionary and a label
# tensor for each example.
dataset = dataset.map(parser)
print("DATASET_1",dataset)
dataset = dataset.shuffle(buffer_size=10000)
print("DATASET_2",dataset)
dataset = dataset.batch(32)
print("DATASET_3",dataset)
dataset = dataset.repeat(num_epochs)
print("DATASET_4",dataset)
iterator = dataset.make_one_shot_iterator()
# `features` is a dictionary in which each value is a batch of values for
# that feature; `labels` is a batch of labels.
features, labels = iterator.get_next()
print("FEATURES",features)
print("LABELS",labels)
print("SESS_RUN_LABELS \n",sess.run(labels))
tf.data.TFRecordDataset() & Initializable iterator
make_initializable_iterator()
为可初始化迭代器,运用此迭代器首先需要先运行显式 iterator.initializer
操作,然后才能使用。并且,可运用 可初始化迭代器实现训练集和验证集的切换。
配合 MNIST数据集 实现代码如下。
# Validate tf.data.TFRecordDataset() using make_initializable_iterator()
# In order to switch between train and validation data
num_epochs = 2
num_class = 10
def parser(record):
keys_to_features = {
"image_raw": tf.FixedLenFeature((), tf.string, default_value=""),
"pixels": tf.FixedLenFeature((), tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
"label": tf.FixedLenFeature((), tf.int64,
default_value=tf.zeros([], dtype=tf.int64)),
}
parsed = tf.parse_single_example(record, keys_to_features)
# Parse the string into an array of pixels corresponding to the image
images = tf.decode_raw(parsed["image_raw"],tf.uint8)
images = tf.reshape(images,[28,28,1])
labels = tf.cast(parsed['label'], tf.int32)
labels = tf.one_hot(labels,10)
pixels = tf.cast(parsed['pixels'], tf.int32)
print("IMAGES",images)
print("LABELS",labels)
return {"image_raw": images}, labels
filenames = tf.placeholder(tf.string, shape=[None])
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(parser) # Parse the record into tensors
# print("DATASET",dataset)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(32)
dataset = dataset.repeat(num_epochs)
print("DATASET",dataset)
iterator = dataset.make_initializable_iterator()
features, labels = iterator.get_next()
print("ITERATOR",iterator)
print("FEATURES",features)
print("LABELS",labels)
# Initialize `iterator` with training data.
training_filenames = ["/Users/honglan/Desktop/train_output.tfrecords"]
# replace the filenames with your own path
sess.run(iterator.initializer,feed_dict={filenames: training_filenames})
print("TRAIN\n",sess.run(labels))
# print(sess.run(features))
# Initialize `iterator` with validation data.
validation_filenames = ["/Users/honglan/Desktop/val_output.tfrecords"]
# replace the filenames with your own path
sess.run(iterator.initializer, feed_dict={filenames: validation_filenames})
print("VAL\n",sess.run(labels))
tf.data.TextLineDataset() & Reinitializable iterator
tf.data.TextLineDataset()
,输入参数可以是后缀名为csv
或者是txt
的源数据的文件路径。
此处用的迭代器是 Reinitializable iterator
,即为可重新初始化迭代器。官方定义如下。配合 MNIST数据集 实现代码见第二部分。
可重新初始化迭代器可以通过多个不同的 Dataset 对象进行初始化。例如,您可能有一个训练输入管道,它会对输入图片进行随机扰动来改善泛化;还有一个验证输入管道,它会评估对未修改数据的预测。这些管道通常会使用不同的 Dataset 对象,这些对象具有相同的结构(即每个组件具有相同类型和兼容形状)。
# validate tf.data.TextLineDataset() using Reinitializable iterator
# In order to switch between train and validation data
def decode_line(line):
# Decode the line to tensor
record_defaults = [[1.0] for col in range(785)]
items = tf.decode_csv(line, record_defaults)
features = items[1:785]
label = items[0]
features = tf.cast(features, tf.float32)
features = tf.reshape(features,[28,28,1])
label = tf.cast(label, tf.int64)
label = tf.one_hot(label,num_class)
return features,label
def create_dataset(filename, batch_size=32, is_shuffle=False, n_repeats=0):
"""create dataset for train and validation dataset"""
dataset = tf.data.TextLineDataset(filename).skip(1)
if n_repeats > 0:
dataset = dataset.repeat(n_repeats) # for train
# dataset = dataset.map(decode_line).map(normalize)
dataset = dataset.map(decode_line)
# decode and normalize
if is_shuffle:
dataset = dataset.shuffle(10000) # shuffle
dataset = dataset.batch(batch_size)
return dataset
training_filenames = ["/Users/honglan/Desktop/train.csv"]
# replace the filenames with your own path
validation_filenames = ["/Users/honglan/Desktop/val.csv"]
# replace the filenames with your own path
# Create different datasets
training_dataset = create_dataset(training_filenames, batch_size=32, \
is_shuffle=True, n_repeats=num_epochs) # train_filename
validation_dataset = create_dataset(validation_filenames, batch_size=32, \
is_shuffle=True, n_repeats=num_epochs) # val_filename
# A reinitializable iterator is defined by its structure. We could use the
# `output_types` and `output_shapes` properties of either `training_dataset`
# or `validation_dataset` here, because they are compatible.
iterator = tf.data.Iterator.from_structure(training_dataset.output_types,
training_dataset.output_shapes)
features, labels = iterator.get_next()
training_init_op = iterator.make_initializer(training_dataset)
validation_init_op = iterator.make_initializer(validation_dataset)
# Using reinitializable iterator to alternate between training and validation.
sess.run(training_init_op)
print("TRAIN\n",sess.run(labels))
# print(sess.run(features))
# Reinitialize `iterator` with validation data.
sess.run(validation_init_op)
print("VAL\n",sess.run(labels))
tf.data.TextLineDataset() & Feedable iterator.
数据集读取方式同上一部分一样,运用tf.data.TextLineDataset()
此处运用的迭代器是 可馈送迭代器,其可以与 tf.placeholder
一起使用,通过熟悉的 feed_dict
机制选择每次调用 tf.Session.run
时所使用的 Iterator。并使用 tf.data.Iterator.from_string_handle
定义一个可让在两个数据集之间切换的可馈送迭代器,结合 MNIST数据集 的代码如下
# validate tf.data.TextLineDataset() using two different iterator
# In order to switch between train and validation data
def decode_line(line):
# Decode the line to tensor
record_defaults = [[1.0] for col in range(785)]
items = tf.decode_csv(line, record_defaults)
features = items[1:785]
label = items[0]
features = tf.cast(features, tf.float32)
features = tf.reshape(features,[28,28])
label = tf.cast(label, tf.int64)
label = tf.one_hot(label,num_class)
return features,label
def create_dataset(filename, batch_size=32, is_shuffle=False, n_repeats=0):
"""create dataset for train and validation dataset"""
dataset = tf.data.TextLineDataset(filename).skip(1)
if n_repeats > 0:
dataset = dataset.repeat(n_repeats) # for train
# dataset = dataset.map(decode_line).map(normalize)
dataset = dataset.map(decode_line)
# decode and normalize
if is_shuffle:
dataset = dataset.shuffle(10000) # shuffle
dataset = dataset.batch(batch_size)
return dataset
training_filenames = ["/Users/honglan/Desktop/train.csv"]
# replace the filenames with your own path
validation_filenames = ["/Users/honglan/Desktop/val.csv"]
# replace the filenames with your own path
# Create different datasets
training_dataset = create_dataset(training_filenames, batch_size=32, \
is_shuffle=True, n_repeats=num_epochs) # train_filename
validation_dataset = create_dataset(validation_filenames, batch_size=32, \
is_shuffle=True, n_repeats=num_epochs) # val_filename
# A feedable iterator is defined by a handle placeholder and its structure. We
# could use the `output_types` and `output_shapes` properties of either
# `training_dataset` or `validation_dataset` here, because they have
# identical structure.
handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
handle, training_dataset.output_types, training_dataset.output_shapes)
features, labels = iterator.get_next()
# You can use feedable iterators with a variety of different kinds of iterator
# (such as one-shot and initializable iterators).
training_iterator = training_dataset.make_one_shot_iterator()
validation_iterator = validation_dataset.make_initializable_iterator()
# The `Iterator.string_handle()` method returns a tensor that can be evaluated
# and used to feed the `handle` placeholder.
training_handle = sess.run(training_iterator.string_handle())
validation_handle = sess.run(validation_iterator.string_handle())
# Using different handle to alternate between training and validation.
print("TRAIN\n",sess.run(labels, feed_dict={handle: training_handle}))
# print(sess.run(features))
# Initialize `iterator` with validation data.
sess.run(validation_iterator.initializer)
print("VAL\n",sess.run(labels, feed_dict={handle: validation_handle}))
小结
- 运用
tfrecords
处理数据的速度明显加快 - 可以根据自身需要选择不同的
iterator
方式对源数据进行预处理 - 单机训练时也可以采用
tf.data
中API的相应处理方式